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(4.3) Remarques.

a) Les actions du théoreme (4.2) sont essentiellement celles construites par
Milnor [Mi2]. A I’époque, on ne disposait pas de I’invariance topologique de
la torsion de Whitehead, ce qui empéchait Milnor de déduire qu’elles n’étaient
pas topologiquement conjuguées a une action linéaire.

b) La démonstration de (4.2) se généralise au cas d’actions libres d’un
groupe fini G sur S”, pourvu que Wh(G) contienne une infinité d’éléments 1
tels que T = 1. C’est, par exemple le cas du groupe du dodécaédre a 120 élé-
ments (voir [Ha], chapitre 5) qui agit librement sur S*!,

c¢) Il est connu que le groupe de chirurgie L,(C,) est infini si ¢ > 2 [Ba].
On déduit alors de la suite exacte de la chirurgie (et de la théorie du lissage)
pour un espace lenticulaire V¢ avec groupe fondamental C, qu’il existe une
infinit¢ dénombrable de variétés W° homotopiquement équivalente a V qui
sont deux-a-deux non-topologiquement A-cobordantes. Leurs revétements uni-
versels sont des sphéres d’homotopie de dimension 6 donc difféomorphes a
S¢. Cet argument montre que pour g > 2, il existe une infinité d’actions
libres de C, sur S¢ qui sont deux-a-deux non-topologiquement conjuguées et
dont aucune n’est topologiquement conjuguée a une action QL.

5. ACTIONS LIBRES DE S'
Nous commencerons par les actions libres de S! sur S3.

(5.1) PROPOSITION. Toute action libre de S! sur S?* est différentiablement
conjuguée a [’action standard.

Démonstration. Une action libre de S! sur S° donne un fibré principal
p:S?— SN\S3 = V (voir le paragraphe 3). On en déduit que V est une surface
qui, par suite exacte du fibré p est simplement connexe. Il s’en suit que V est
difféomorphe a S2. Le fibré p est induit du fibré de Hopf par une application
f:V— 82, Comme dans la démonstration du cas a) du théoréme (3.1), on
déduit que le degré de fest +1 et donc f est homotope a un difféomorphisme.
Ce difféomorphisme se reléve, au niveau des espaces totaux, en un difféo-
morphisme S!-équivariant qui conjugue notre action de départ avec 1’action
standard.

(5.2) THEOREME. Toute action libre QL de S' sur S", avec n 2= 7,
est différentiablement conjuguée a !’action standard.
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Démonstration. Soit (S",a) une telle action. Par le lemme (3.2), on sait
que P’action linéaire associée a’ est standard. Par le théoréme (3.1), il existe
un A-cobordisme (W",V,.,V,). Comme W est simplement connexe €t 7 >,
le théoréeme du A-cobordisme implique que W est difféomorphe a
V., x [0,1]. On en déduit, par le cas a) du théoréme (3.1) que a et o’ sont
différentiablement conjuguees.

(5.3) Remarque. 1l existe, en général, une infinité dénombrable d’actions
libre de S! sur S” qui sont deux-3-deux non-topologiquement conjuguées
(voir [Hs] pour un exemple dans le cas n = 11). Ces actions ne sont donc pas
topologiquement conjuguées a une action QL.

La situation pour les actions libres de S! sur S”, pour n > 7 peut donc se
schématiser de la facon suivante:

actions linéaires = g actions QL #rop actions générales.
En revanche, pour les actions libres de S! sur S5, on va voir que ’on a:
actions linéaires =rop actions QL = ppr actions générales

et que l’égalité actions linéaires =, actions QL constitue un probleme
ouvert. De maniere précise:

(5.4) THEOREME. a) Toute action libre de S' sur S° est différentiable-
ment conjuguée a une action QL et topologiquement conjuguée a [’action
standard.

b) L’ensemble des classes de conjugaison différentiable d’actions QL
libres de S! sur S° se surjecte sur [’ensemble des classes de difféo-
morphisme de structures différentiables sur CP?2. Les préimages de cette
surjection ont au plus 2 éléments.

Remarque. La détermination de ’ensemble des classes de difféomor-
phisme de structures différentiables sur CP? constitue un probléme ouvert.
On ne sait méme pas si cet ensemble est fini (le méme ensemble, pour certaines
sommes connexes de + CP?, est infini [FM]). Dans 1’état actuel des connais-
sances il est bien sfir possible que cet ensemble soit réduit a un seul élément,
auquel cas toute action libre serait différentiablement conjuguée a 1’action
standard (voir le corollaire (5.5) ci-dessous).

Démonstration. Soit (S°,a) une action différentiable libre de S! sur S3.
Le quotient V, = SI\S3 est une variété de dimension 4 et la projection
p: S°>— Vy est un S!-fibré principal, induit du fibré de Hopf 1. On a donc un
morphisme de S!-fibrés:
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Avec la suite exacte d’homotopie, on vérifie que f est une équivalence d’homo-
topie. Un théoréme de C.T.C. Wall [Ki], Theorem 1 p. 59 implique que V,
et CP? sont A-cobordante ce qui, par le théoréme (3.1), entraine que a est dif-
férentiablement conjuguée a une action QL (I’action linéaire associée étant
standard). De plus, le théoréme du A-cobordisme topologique de M. Freed-
mann [Fr], théoreme 1.3 implique que V, est homéomorphe a CP2. L’action
o est donc topologiquement conjuguée a I’action standard (Théoreme (3.1),
cas b). Ceci démontre le point a) et permet de définir 1’application du point
b): a une action QL libre o on associe sa variété quotient V.

Soit V une variété différentiable homéomorphe a CP2. Par le théoréme de
Wall cité ci-dessus, il existe un A-cobordisme (W, CP?2, V). Le fibré de Hopf
sur CP? s’étend en un S!-fibré principal sur W qui, par restriction a ¥ donne
un S'!-fibré principal £ — V. Par le théoréme du A-cobordisme, E est difféo- -
morphe & S°. On obtient ainsi une action a libre de S! sur S5 qui est QL par
le théoréme (3.1), avec V, = V. Cela démontre que notre correspondance est
surjective. D’autre part, soient o et o’ sont deux actions libres dont les
quotients sont difféomorphes a V. Les projections de S° sur V, et V, sont
donc équivalentes a deux S!-fibrés principaux sur ¥. Comme dans la démons-
tration du théoréme 3.1, on vérifie que les premiéres classes de Chern de ces
fibrés sont des générateurs de H?(V;Z) = Z. Cela montre que V a au plus
deux préimages qui seront confondues si et seulement si V possede un difféo-
‘morphisme sur lui-méme induisant la multiplication par —1 sur H?*(V;Z).
Cela achéve la preuve du point b) et démontre le corollaire suivant:

(5.5) COROLLAIRE. Les deux énoncés suivants sont équivalents:

1) Toute action libre de S' sur S° est différentiablement conjuguée a
I’action standard.

2) Toute variété différentiable homéomorphe a CP? est difféomorphe a
CP?2.
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