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62 J.-C. HAUSMANN

Démonstration de a) pour G = S3. On procéde exactement comme dans
le cas de S!. Le role de CP* est remplacé par I’espace projectif quaternionien
HP*. Tout S3-fibré sur un complexe de dimension 4k est induit du fibré de
Hopf S” — HP*. On a donc un morphisme de S3-fibrés:

sno b g

¢l I

HP* 5 HP
et la classe d’homotopie de f représente la seconde classe de Chern
c,(E) € H*(HP*;Z) = Z. Comme 73(S") = 0, on déduit, comme dans le cas
précédent que ¢;(E’) = +1 et donc f est homotope a un difféomorphisme
(donc f a un difféomorphisme équivariant).

Démonstration de b. Elle est en tout point semblable a celle de a).

Démonstrations de c) et d). Supposons que o est QL associée a 1’action
linéaire a.’. Soit (B, ) un G-cobordisme G-inversible a droite, entre (S7,a") et
(S”,a) comme construit dans la démonstration du théoréme (2.1). On vérifie
sur la construction que ’action de G sur B est libre. Comme B est un A-
cobordisme, le quotient W = G\B est donc un A-cobordisme entre V- et V,,.
Par le lemme (3.3), on a un difféomorphisme de HV, X ]0, oo |
= Vy X 10, oo .

Pour terminer la démonstration, il suffit de construire un difféomorphisme
G-équivariant Ah: (S" X 10, oo [,a) = (S” X ]0, o [a") (actions produit). En
effet, comme (S” X J0, o [a’) est G-difféomorphe a (R**! — {0},a")
(puisque a’ est linéaire), #|S™ x {0} sera alors un plongement S'-équivariant
de (S”,0) dans (R"*1,0."), ce qui montre que o est QL associée a o’.

Le difféomorphisme 4 se construit de la méme mani¢re que dans le cas a)
(remplacant V, par V, X R, etc. les détails sont laissés au lecteur. Enfin, si
h:VyxR—>V, xR est un difféomorphisme, le cobordisme entre
h(V, x {0} et V,. x {t}, pour ¢ assez grand, est clairement un Z-cobordisme.

4. ACTIONS LIBRES D’UN GROUPE CYCLIQUE FINI

Soit C, le groupe cyclique d’ordre g. Dans ce paragraphe, nous allons
démontrer les deux théorémes suivants:

(4.1) THEOREME. Si q = 2, 3, 4 ou 6, toute action QL libre de C, sur
Sn(n > 5) est différentiablement conjuguée a son action linéaire associée.
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(4.2) THEOREME. Soit o une action linéaire libre de C, sur S”. Suppo-
sonsque q + 2,3, 4oubetn > 5. Alors il existe une infinité dénombrable
d’actions QL de C, sur S" associées a a, quisont deux-d-deux non-
topologiquement conjuguées et dont aucune n’est topologiquement conjuguée
a une action linéaire.

Démonstration de (4.1). Soit o une action linéaire libre de C, sur S” et
o’ une action QL associée a a. Par le théoréme (3.1) cas c), les variétés quotient
V, et V,  sont h-cobordantes. Si ¢ = 2, 3, 4 ou 6, le groupe de Whitehead
Wh(C,) est nul [Co], (11.5). Comme 7;(V,) = C, et n =5, le théoréme du
s-cobordisme [Ke], p. 32 assure que V, et V,- sont difféomorphes. Les actions
a et o’ sont donc différentiablement conjuguées par le cas a) du théoréme (3.1).

Démonstration de (4.2). Si g # 2, 3, 4 ou 6, le groupe de Whitehead
Wh(C,) est infini dénombrable ([Col, (11.5)). Pour chaque y € Wh(C,), il
existe un A-cobordisme (W,,Vy, Vyy) dont la torsion de Whitehead
T(W,, Vo) =v e Wh(V,) ([Kel, p. 32). Le revétement universel WY de W, est
un A-cobordisme entre S” et V). Par le théoréme du A-cobordisme, on en
déduit que V,, est difféomorphe a S”, ce qui donne une action QL a(y) sur
S associée a a (par le cas c) du théoréme (3.1)).

Nous affirmons que les classes de conjugaison topologique de ces
(S™,a(y)) contiennent au plus un nombre fini d’éléments. En effet, dans le
cas contraire, on aurait, pour une collection infinie de y € Wh(C,), un
homéomorphisme &, de V,(y) sur une variété fixe 4. Soit g,: V, = Vi la
composition de I’inclusion V, C W, avec la rétraction de W, sur V,,, et soit
Jy: Vo = A Péquivalence d’homotopie f, = h, © g,. Comme t(h,) = 0 [Co],
p. 102, on a

T(H) = hy(t(gy) = hyp(y + (= D+ 1y)

(voir [Mi], p. 401). Dans Wh(C,) on a y = y par [Mi], Lemma 6.7 et [Co],
11.5. D’ou t(f,) = A,+(2y). On en déduit que pour une infinité de vy, les appli-
cations f, sont deux-a-deux non-homotopes. Ceci contredit le fait, facilement
visible par la théorie des obstructions, que I’ensemble des classes d’homotopie
d’équivalences d’homotopie de V, dans A est fini.

On peut donc extraire un ensemble dénombrable Q de (S, a.(Y)) qui sont
deux-a-deux non-topologiquement conjuguées. Les classes de conjugaison de
représentations lin€aires de C? dans R”+! étant en nombre fini, seul un sous-
ensemble fini de Q peut donc étre constitué d’actions topologiquement
conjuguées a une action linéaire.
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(4.3) Remarques.

a) Les actions du théoreme (4.2) sont essentiellement celles construites par
Milnor [Mi2]. A I’époque, on ne disposait pas de I’invariance topologique de
la torsion de Whitehead, ce qui empéchait Milnor de déduire qu’elles n’étaient
pas topologiquement conjuguées a une action linéaire.

b) La démonstration de (4.2) se généralise au cas d’actions libres d’un
groupe fini G sur S”, pourvu que Wh(G) contienne une infinité d’éléments 1
tels que T = 1. C’est, par exemple le cas du groupe du dodécaédre a 120 élé-
ments (voir [Ha], chapitre 5) qui agit librement sur S*!,

c¢) Il est connu que le groupe de chirurgie L,(C,) est infini si ¢ > 2 [Ba].
On déduit alors de la suite exacte de la chirurgie (et de la théorie du lissage)
pour un espace lenticulaire V¢ avec groupe fondamental C, qu’il existe une
infinit¢ dénombrable de variétés W° homotopiquement équivalente a V qui
sont deux-a-deux non-topologiquement A-cobordantes. Leurs revétements uni-
versels sont des sphéres d’homotopie de dimension 6 donc difféomorphes a
S¢. Cet argument montre que pour g > 2, il existe une infinité d’actions
libres de C, sur S¢ qui sont deux-a-deux non-topologiquement conjuguées et
dont aucune n’est topologiquement conjuguée a une action QL.

5. ACTIONS LIBRES DE S'
Nous commencerons par les actions libres de S! sur S3.

(5.1) PROPOSITION. Toute action libre de S! sur S?* est différentiablement
conjuguée a [’action standard.

Démonstration. Une action libre de S! sur S° donne un fibré principal
p:S?— SN\S3 = V (voir le paragraphe 3). On en déduit que V est une surface
qui, par suite exacte du fibré p est simplement connexe. Il s’en suit que V est
difféomorphe a S2. Le fibré p est induit du fibré de Hopf par une application
f:V— 82, Comme dans la démonstration du cas a) du théoréme (3.1), on
déduit que le degré de fest +1 et donc f est homotope a un difféomorphisme.
Ce difféomorphisme se reléve, au niveau des espaces totaux, en un difféo-
morphisme S!-équivariant qui conjugue notre action de départ avec 1’action
standard.

(5.2) THEOREME. Toute action libre QL de S' sur S", avec n 2= 7,
est différentiablement conjuguée a !’action standard.
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