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3. Actions libres - Résultats généraux

Soit G un groupe de Lie compact. Si a: G x Sn -> Sn est une action, on

dénotera par Va l'espace des orbites. Rappelons que si a est libre, Va est une

variété différentiable et la projection Sn Va est un G-fibré principal (voir

[Br], paragraphes II. 1 et ILS). Le but de ce paragraphe est de démontrer le

théorème suivant:

(3.1) Théorème. Soient a,a': G x Sn -+ Sn deux actions libres, où G

est un groupe de Lie compact. On suppose que a' est une action linéaire.

Alors:

a) a est différentiablement conjuguée à a' si et seulement si Va et

Var, sont difféomorphes.

b) a est topologiquement conjuguée à a' si et seulement si Va et Va>

sont homéomorphes.

c) Si n — dim G ^ 4, a est une action QL associée à ou si et seulement

si Va et Va' sont h-cobordantes.

d) Si n - dim G ^ 4, a est une action QL associée à a' si et seulement

si Va x R et Va' x R sont difféomorphes.

La démonstration de (3.1) utilise deux lemmes, probablement bien connus
des spécialistes:

(3.2) Lemme. Soit a une action linéaire d'un groupe de Lie G sur Sn.

Supposons qu'il s'agisse d'une action libre. Alors, G est ou bien fini ou
bien isomorphe à S1 ou S3. De plus:

a) Si G S1, alors n - 2k 4- 1 et a est linéairement conjuguée à

l'action diagonale standard de S1 sur l'espace complexe Ck+l.

b) Si G S3, alors n 4k + 3 et a est linéairement conjuguée à

l'action diagonale standard de S3 sur l'espace quaternionique H*+1.

Démonstration. Les sous-représentations irréductibles de a donneront
aussi une action libre sur leur sphère. On peut donc se restreindre au cas où

a est irréductible. Supposons tout d'abord que G est connexe.
Si G est abélien et a: G SOn est irréductible, alors n — 2. Comme a

doit être injectif pour donner une action libre sur S1, on aura G S1 et a est

l'identité ou la conjugaison complexe, qui sont linéairement conjuguées dans
le groupe 02.
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Dans le cas non-abélien, l'argument ci-dessus s'applique au tore maximal
de G qui doit donc être de dimension 1. Cela implique que G est isomorphe
à S3 ou S03. La liste des représentations irréductibles de ces deux groupes est

connue ([Vi], pp. 78-79 et 113). On vérifie aisément que les représentations
irréductibles de S03 admettent un vecteur de groupe d'isotripie S02 et que,

pour celles de S3, seule la représentation standard sur H est sans valeur

propre 1. Dans le cas général, on peut appliquer ce qui précède à la composante
connexe G\ de l'élément neutre de G. On a donc G\ S1 ou S3. Occupons-
nous du premier cas, le cas G S3, qui se traite similairement, sera laissé au
lecteur. On peut donc identifier le quotient Gi\S3 avec CP* de manière que
le S^-fibré principal Sn CPk est le fibré de Hopf.

Soit y e G et dénotons par y sa classe dans G{\G - ir0(G). Ce dernier

groupe opère librement sur G\\Sn CP*, ce qui nous permet de considérer
la paire (y,y) comme un morphisme du fibré de Hopf r\ sur lui-même:

Sn Sn

i n in

CP* ^ CP*

L'existence de y au-dessus de y n'est possible que si y induit l'identité sur

H2(CP*;Z) et donc sur toute la cohomologie de CP*. Son nombre de

Lefschetz est donc positif, ce qui, par le théorème du point-fixe de Lefschetz,
contredit le fait que y n'a pas de point fixe.

(3.3) Lemme. Soit (Wn,M,N) un h-cobordisme de dimension n ^ 5.

Alors W est inversible et M x R est difféomorphe à iVxR.

Démonstration. Si n > 5, l'inversibilité de W est classique ([Po], Corollaire

6, p. 18). Dans le cas n 5, on considère W x [0,1] comme un h-

cobordisme entre M x [0,1] et P W x {0} u TV x [0,1] u W x {1}. Soit

(Z,M x [1,2],Q) un h-cobordisme tel que sa torsion de Whitehead

x(ZyM X [1,2]) soit égale à -t(W x [0,l],Mx [0,1])= -x{WtM). L'union
de W x [0,1] avec Z (le long d'un col de M x {1} dans W x {1} et dans Q)
donne un s-cobordisme entre M x [0,2] et P u Q. Par le théorème du s1-

cobordisme, P u Q W x {0} u ((P u Q) — W x {0}) est difféomorphe à

Mx [0,2]. On voit que W est inversible à droite. Un argument similaire
montre que W est inversible à gauche.
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On a donc, si n > 4, un /z-cobordisme (W,NyM) avec

W u W M X [0,1] et W u W AT x [0,1]. Ceci montre que M x R est

difféomorphe à TV x R par l'argument classique:

M x R u (W u PL) u (JF u PF) u
u (PF u PF) u (PF u PF) u TV x R

Preuve du théorème (3.1). Démontrons tout d'abord le point a). Par le

lemme 3.2, il suffit de considérer les cas G fini, G S1 et G S3.

Démonstration de a) pour G fini. Soit h: Va -> Vun difféomorphisme.
Les projections S" Va et Sn F«' s'identifient aux revêtements universels
de Va et de Va*. Le difféomorphisme h se relève donc en un difféomorphisme
h : Sn Sn qui est G-équivariant.

Démonstration de a)pour G S1. Par le lemme 3.2 a), la variété Va> est

difféomorphe à l'espace projectif complexe CP^-1. On a donc un difféomorphisme

h: Va -> CPL La composition de la projection Sn Va avec h donne

un S^fibré principal S"CPL Rappelons que le fibré de Hopf
(p: S" CP^ est universel pour les S^-fibrés principaux sur des complexes de

dimension 2k. On a donc un morphisme de fibrés:

5" ^ S"

ï i 11

Cp*: Â CPk

et la classe d'homotopie de /(composée avec l'inclusion de CPk dans CP
représente la lre classe de Chern c, (4) e H2(CPk;Z). Comparons les suites
exactes d'homotopie de ces fibrés:

0 7t2(5") 71, (CP*) ^ 7t, (5 ' ^ 7t,(S") 0

I I »2/ 1 l

0 J12(S") - TI2(CP*) -» 71,(5') -» 71,(5") 0

Comme n2(CPk) H2(CP*),on a que 7t est la multiplication par c, (£"). Vu
que 71,(5") 0, il en résulte que c,(£") ±1. On peut donc choisir le
morphisme de fibré ci-dessus de manière que/soit un difféomorphisme (l'iden-
titité ou la conjugaison complexe). L'application / : 5" -» 5" sera alors un
difféomorphisme 5'-équivariant.
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Démonstration de a) pour G S3. On procède exactement comme dans

le cas de S1. Le rôle de CP* est remplacé par l'espace projectif quaternionien
HP*. Tout S3-fibré sur un complexe de dimension 4k est induit du fibré de

Hopf S" -> HP*. On a donc un morphisme de 53-fibrés:

S" ^ S"

c 1 | n

HP* -ï HP*
et la classe d'homotopie de / représente la seconde classe de Chern

c2(£) e H4(HP*;Z) Z. Comme 713(5") 0, on déduit, comme dans le cas

précédent que c2{E') ±1 et donc / est homotope à un difféomorphisme
(donc / à un difféomorphisme équivariant).

Démonstration de b. Elle est en tout point semblable à celle de a).

Démonstrations de c) et d). Supposons que a est QL associée à l'action
linéaire a'. Soit (#, ß) un G-cobordisme G-inversible à droite, entre (Sn,af) et

(Sn, a) comme construit dans la démonstration du théorème (2.1). On vérifie
sur la construction que l'action de G sur B est libre. Comme B est un h-

cobordisme, le quotient W G\B est donc un /z-cobordisme entre Va> et Va.

Par le lemme (3.3), on a un difféomorphisme de HVax ]0, 00 [

- La' x ]0, 00 [.

Pour terminer la démonstration, il suffit de construire un difféomorphisme
G-équivariant h: (Sn x ]0, 00 [5a) - (Sn x ]0, 00 [a') (actions produit). En

effet, comme (Sn x ]0, 00 [a') est G-difféomorphe à (R"+1 — {0},a')
(puisque a' est linéaire), /z | .S" x {0} sera alors un plongement S ^équivariant
de (Sn,a) dans (Rn + \a'), ce qui montre que a est QL associée à a'.

Le difféomorphisme h se construit de la même manière que dans le cas a)

(remplaçant Va par Va x R, etc. les détails sont laissés au lecteur. Enfin, si

h: Va x R -> La' x R est un difféomorphisme, le cobordisme entre

MLa x {0}) et Va. x {?}, pour t assez grand, est clairement un Ä-cobordisme.

4. Actions libres d'un groupe cyclique fini

Soit Cq le groupe cyclique d'ordre q. Dans ce paragraphe, nous allons

démontrer les deux théorèmes suivants:

(4.1) Théorème. Si q 2, 3, 4 ou 6, toute action QL libre de Cq sur
Sn (n ^ 5) est différentiablement conjuguée à son action linéaire associée.
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