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3. ACTIONS LIBRES — RESULTATS GENERAUX

Soit G un groupe de Lie compact. Si a: G X $” = S" est une action, on
dénotera par V, ’espace des orbites. Rappelons que si o est libre, V, est une
variété différentiable et la projection S” = V, est un G-fibré principal (voir
[Br], paragraphes II.1 et I1.5). Le but de ce paragraphe est de démontrer le
théoréme suivant:

(3.1) THEOREME. Soient o,0’:G X S8"— 8" deux actions libres, ou G
est un groupe de Lie compact. On suppose que a.’ est une action linéaire.
Alors:

a) o est différentiablement conjuguée a o’ si et seulement si Vy et
V4, sont difféomorphes.

b) a est topologiquement conjuguée a o’ si et seulement si V. et Vo
sont homéomorphes.

¢) Si n—dimG >4, a estuneaction QL associéea o’ siet seule-
ment si V, et V, sont h-cobordantes.

d) Si n—dimG >4, o estuneaction QL associéea o’ siet seule-
ment si Vy, X R et Vy X R sont difféomorphes.

La démonstration de (3.1) utilise deux lemmes, probablement bien connus
des spécialistes:

(3.2) LEMME. Soit o une action linéaire d’un groupe de Lie G sur S".
Supposons qu’il s’agisse d’une action libre. Alors, G est ou bien fini ou
bien isomorphe a S' ou S3. De plus:

a) Si G=S', alors n=2k+ 1 et a estlinéairement conjuguée a
I’action diagonale standard de S' sur l’espace complexe Ck+1,

b) Si G=S83 alors n=4k +3 et o est linéairement conjuguée a
[’action diagonale standard de S3 sur [’espace quaternionique H*+1,

Démonstration. Les sous-représentations irréductibles de o donneront
aussi une action libre sur leur spheére. On peut donc se restreindre au cas ou
a est irréductible. Supposons tout d’abord que G est connexe.

Si G est abélien et a: G — SO, est irréductible, alors » = 2. Comme o
doit étre injectif pour donner une action libre sur S!, on aura G = S! et a est

I’identité ou la conjugaison complexe, qui sont linéairement conjuguées dans
le groupe O,.
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Dans le cas non-abélien, I’argument ci-dessus s’applique au tore maximal
de G qui doit donc étre de dimension 1. Cela implique que G est isomorphe
a S3 ou SOs. La liste des représentations irréductibles de ces deux groupes est
connue ([Vi], pp. 78-79 et 113). On vérifie aisément que les représentations
irréductibles de SO; admettent un vecteur de groupe d’isotripie SO, et que,
pour celles de S?3, seule la représentation standard sur H est sans valeur
propre 1. Dans le cas général, on peut appliquer ce qui précéde a la composante
connexe G; de I’¢lément neutre de G. On a donc G, = S! ou S3. Occupons-
nous du premier cas, le cas G = S3, qui se traite similairement, sera laissé au
lecteur. On peut donc identifier le quotient G,\S3 avec CP* de maniére que
le S!-fibré principal S* = CP* est le fibré de Hopf.

Soit v € G et dénotons par y sa classe dans G\\G = 7y(G). Ce dernier
groupe opére librement sur G\S" = CP¥*, ce qui nous permet de considérer
la paire (y,y) comme un morphisme du fibré de Hopf n sur lui-méme:

Y

Sn — Sn

L bn

CP¢¥ > CP*

I’existence de y au-dessus de y n’est possible que si y induit ’identité sur
H?*(CP*;Z) et donc sur toute la cohomologie de CP* Son nombre de
Lefschetz est donc positif, ce qui, par le théoréme du point-fixe de Lefschetz,
contredit le fait que y n’a pas de point fixe.

(3.3) LEMME. Soit (W",M,N) un h-cobordisme de dimension n > 5.
Alors W est inversible et M X R est difféeomorphe a N X R.

Démonstration. Si n > 5, 'inversibilité de W est classique ([Po], Corol-
laire 6, p. 18). Dans le cas n = 5, on considere W x [0,1] comme un A-
cobordisme entre M X [0,1] et P = W x {0} u N x [0,1] U W x {1}. Soit
(Z,M x [1,2],0) un h-cobordisme tel que sa torsion de Whitehead
T(Z,M X [1,2]) soit égalea —t (W x [0,1],M x [0,1]) = —7(W,M). L’union
de W x [0,1] avec Z (le long d’un col de M X {1} dans W x {1} et dans Q)
donne un s-cobordisme entre M X [0,2] et P u Q. Par le théoreme du s-
cobordisme, P U Q = W x {0} u (P U Q) — W x {0}) est difféomorphe a
M x [0,2]. On voit que W est inversible & droite. Un argument similaire
 montre que W est inversible a gauche.
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On a donc, si n>4, un h-cobordisme (W, N, M) avec
WuW=MxI[0,1]1et Wu W = N x [0,1]. Ceci montre que M X R est
difféomorphe a N X R par P’argument classique:

M><R=...U(WUW)U(WUW)U...
:...U(WU W)U(Wu W)yu ...=NXR.

Preuve du théoréme (3.1). Démontrons tout d’abord le point a). Par le
lemme 3.2, il suffit de considérer les cas G fini, G = S' et G = §°.

Démonstration de a) pour G fini. Soit h: V, = V. un difféomorphisme.
Les projections S” — V, et S” = V. s’identifient aux revétements universels
de V, et de V,.. Le difféomorphisme 4 se reléve donc en un difféomorphisme
h:Sn— Sn qui est G-équivariant.

Démonstration de a) pour G = S'. Par le lemme 3.2 a), la variété V. est
difféomorphe a I’espace projectif complexe CP*~1. On a donc un difféomor-
phisme 4: V, — CP*. La composition de la projection S” — V, avec A donne
un S!-fibré principal {:S” — CP* Rappelons que le fibré de Hopf
@: S" — CP* est universel pour les S!-fibrés principaux sur des complexes de
dimension 2k. On a donc un morphisme de fibrés:

Sn L Sn
¢ | I

cpr L cp+
et la classe d’homotopie de f (composée avec ’inclusion de CP* dans CP~)
représente la 1t classe de Chern ¢; (§) € H*(CP*;Z). Comparons les suites
exactes d’homotopie de ces fibrés:

0 = m(S") = M (CP¥) = 1y (SY) = 7y (S") = 0
l L mf I l

0 = m2(S") = m(CPX) = 1, (') = mi(S") = 0

Comme 7, (CP*) = H,(CP¥), on a que 7,f est la multiplication par ¢;(E’). Vu
que 7;(S") = 0, il en résulte que ¢;(E’) = = 1. On peut donc choisir le
morphisme de fibré ci-dessus de maniére que fsoit un difféomorphisme (’iden-
titit€ ou la conjugaison complexe). L’application f~ : " — 87 sera alors un
difféomorphisme S!-équivariant.
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Démonstration de a) pour G = S3. On procéde exactement comme dans
le cas de S!. Le role de CP* est remplacé par I’espace projectif quaternionien
HP*. Tout S3-fibré sur un complexe de dimension 4k est induit du fibré de
Hopf S” — HP*. On a donc un morphisme de S3-fibrés:

sno b g

¢l I

HP* 5 HP
et la classe d’homotopie de f représente la seconde classe de Chern
c,(E) € H*(HP*;Z) = Z. Comme 73(S") = 0, on déduit, comme dans le cas
précédent que ¢;(E’) = +1 et donc f est homotope a un difféomorphisme
(donc f a un difféomorphisme équivariant).

Démonstration de b. Elle est en tout point semblable a celle de a).

Démonstrations de c) et d). Supposons que o est QL associée a 1’action
linéaire a.’. Soit (B, ) un G-cobordisme G-inversible a droite, entre (S7,a") et
(S”,a) comme construit dans la démonstration du théoréme (2.1). On vérifie
sur la construction que ’action de G sur B est libre. Comme B est un A-
cobordisme, le quotient W = G\B est donc un A-cobordisme entre V- et V,,.
Par le lemme (3.3), on a un difféomorphisme de HV, X ]0, oo |
= Vy X 10, oo .

Pour terminer la démonstration, il suffit de construire un difféomorphisme
G-équivariant Ah: (S" X 10, oo [,a) = (S” X ]0, o [a") (actions produit). En
effet, comme (S” X J0, o [a’) est G-difféomorphe a (R**! — {0},a")
(puisque a’ est linéaire), #|S™ x {0} sera alors un plongement S'-équivariant
de (S”,0) dans (R"*1,0."), ce qui montre que o est QL associée a o’.

Le difféomorphisme 4 se construit de la méme mani¢re que dans le cas a)
(remplacant V, par V, X R, etc. les détails sont laissés au lecteur. Enfin, si
h:VyxR—>V, xR est un difféomorphisme, le cobordisme entre
h(V, x {0} et V,. x {t}, pour ¢ assez grand, est clairement un Z-cobordisme.

4. ACTIONS LIBRES D’UN GROUPE CYCLIQUE FINI

Soit C, le groupe cyclique d’ordre g. Dans ce paragraphe, nous allons
démontrer les deux théorémes suivants:

(4.1) THEOREME. Si q = 2, 3, 4 ou 6, toute action QL libre de C, sur
Sn(n > 5) est différentiablement conjuguée a son action linéaire associée.
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