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ACTIONS QUASI-LINEAIRES SUR LES SPHERES

par Jean-Claude HAUSMANN

INTRODUCTION

Soit G un groupe de Lie compact. Une représentation a: G > O, ,; de G
induit une action G x §” — S”. Une telle action est dite /inéaire (ou orthogo-
nale).

Cet article est motivé par la remarque que ’on peut se servir de a pour
engendrer d’autres actions sur S”. Pour cela, considérons un plongement
e: S" S R7+1, On suppose que I'image X = e(S”) est invariante par 1’action
de G sur R"*1, ¢’est-a-dire que GX = X. Pour simplifier, nous supposerons
également que X englobe O (c’est-a-dire que O est dans la composante relative-
ment compacte du complémentaire de X). La figure 1 ci-dessous donne un

G=-C,,D,

FiGURE 1
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exemple pour le cas n = 1, G = C; (cyclique d’ordre 3) ou (D; (dihédral). On
obtient alors une nouvelle action

G X Sr—> 8"

(g,%) > g*x = e~ '(ge(x))

Une telle action sera dite quasi-linéaire (QL) (d’action linéaire associée a).
Nous nous proposons, dans cet article, d’étudier les questions suivantes:

1) Une action QL est-elle toujours différentiablement conjuguée a son
action linéaire associée? (C’est-a-dire, existe-t-il un difféomorphisme
h: 8" — S" tel que gxx = h~1gh(x))?)

2) Une action QL est-elle toujours topologiquement conjuguée a son action
linéaire associée? (C’est-a-dire, existe-t-il un homéomorphisme A: S* — S” tel
que gxx = h~1gh(x))?)

3) Toute action de G sur S” est-elle différentiablement (ou topologique-
ment) conjuguée a une action QL?

On verra que la réponse a ces questions, pour différents n et G, est parfois
positive, parfois négative et parfois ouverte et équivalente a un probléme
célebre, par exemple la conjecture de Poincaré différentiable en dimension 4.
Il est a remarquer que ces questions, dont I’énoncé est extrémement élémen-
taire, mettent en jeu, pour leur résolution, une partie importante des grandes
techniques de la topologie différentielle.

Des exemples naturels d’actions QL sont donnés au paragraphe 7. On en
trouvera aussi dans [Ha2], paragraphe 4.

Je tiens a remercier P. Vogel et M. Rothenberg pour d’intéressantes discus-
sions.

2. G-COBORDISMES D’ACTIONS

Soit G un groupe de Lie. Nous travaillons dans la catégorie des G-variétés.
Un objet de cette catégorie est une paire (V, a), ou V est une variété différen-
tiable (C*) et a: G X V' — V est une action différentiable. Une telle acton
définit (et est déterminée par) un homomorphisme G — DIFF(V), ou DIFF (V)
dénote le groupe des difféomorphismes de V. Cet homomorphisme sera égale-
ment dénoté par a. De ce point de vue, un morphisme de (V, a;) vers (V>, a,)
est une application différentiable f: V; = V, qui est G-équivariante, ce qui
peut s’écrire foo; = a, 0 f.
| Un G-cobordisme entre deux G-variétés (Vi,a;) et (V,,a,) est une G-

variété (B, B), ou (B, V1, V) est un cobordisme (i.e. 3B = V, LI 1)) tel que la
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