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ACTIONS QUASI-LINEAIRES SUR LES SPHERES

par Jean-Claude HAUSMANN

INTRODUCTION

Soit G un groupe de Lie compact. Une représentation a: G > O, ,; de G
induit une action G x §” — S”. Une telle action est dite /inéaire (ou orthogo-
nale).

Cet article est motivé par la remarque que ’on peut se servir de a pour
engendrer d’autres actions sur S”. Pour cela, considérons un plongement
e: S" S R7+1, On suppose que I'image X = e(S”) est invariante par 1’action
de G sur R"*1, ¢’est-a-dire que GX = X. Pour simplifier, nous supposerons
également que X englobe O (c’est-a-dire que O est dans la composante relative-
ment compacte du complémentaire de X). La figure 1 ci-dessous donne un

G=-C,,D,

FiGURE 1
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exemple pour le cas n = 1, G = C; (cyclique d’ordre 3) ou (D; (dihédral). On
obtient alors une nouvelle action

G X Sr—> 8"

(g,%) > g*x = e~ '(ge(x))

Une telle action sera dite quasi-linéaire (QL) (d’action linéaire associée a).
Nous nous proposons, dans cet article, d’étudier les questions suivantes:

1) Une action QL est-elle toujours différentiablement conjuguée a son
action linéaire associée? (C’est-a-dire, existe-t-il un difféomorphisme
h: 8" — S" tel que gxx = h~1gh(x))?)

2) Une action QL est-elle toujours topologiquement conjuguée a son action
linéaire associée? (C’est-a-dire, existe-t-il un homéomorphisme A: S* — S” tel
que gxx = h~1gh(x))?)

3) Toute action de G sur S” est-elle différentiablement (ou topologique-
ment) conjuguée a une action QL?

On verra que la réponse a ces questions, pour différents n et G, est parfois
positive, parfois négative et parfois ouverte et équivalente a un probléme
célebre, par exemple la conjecture de Poincaré différentiable en dimension 4.
Il est a remarquer que ces questions, dont I’énoncé est extrémement élémen-
taire, mettent en jeu, pour leur résolution, une partie importante des grandes
techniques de la topologie différentielle.

Des exemples naturels d’actions QL sont donnés au paragraphe 7. On en
trouvera aussi dans [Ha2], paragraphe 4.

Je tiens a remercier P. Vogel et M. Rothenberg pour d’intéressantes discus-
sions.

2. G-COBORDISMES D’ACTIONS

Soit G un groupe de Lie. Nous travaillons dans la catégorie des G-variétés.
Un objet de cette catégorie est une paire (V, a), ou V est une variété différen-
tiable (C*) et a: G X V' — V est une action différentiable. Une telle acton
définit (et est déterminée par) un homomorphisme G — DIFF(V), ou DIFF (V)
dénote le groupe des difféomorphismes de V. Cet homomorphisme sera égale-
ment dénoté par a. De ce point de vue, un morphisme de (V, a;) vers (V>, a,)
est une application différentiable f: V; = V, qui est G-équivariante, ce qui
peut s’écrire foo; = a, 0 f.
| Un G-cobordisme entre deux G-variétés (Vi,a;) et (V,,a,) est une G-

variété (B, B), ou (B, V1, V) est un cobordisme (i.e. 3B = V, LI 1)) tel que la




ACTIONS QUASI-LINEAIRES SUR LES SPHERES 57

G-action B: Gx(B, V1, V2) = (B, V1, V>) étende o, et a,. Un tel cobordisme est
dit G-inversible a droite $’il existe un G-cobordisme (C,y) entre (V>, a,) et
(V1,0,) et un G-difféomorphisme

h: (Buy,C, Vi, Vi) = (Vi x [0, 11, ¥y x {0}, V1 x {1})

valant Pidentité sur le bord (ou V; x [0, 1] est muni de la G-action produit).
Rappelons qu’un cobordisme (W, M, N) est un h-cobordisme si les inclu-
sions M C W et N C W sont des équivalences d’homotopie.

Les résultats relatifs aux actions QL se déduiront du théoréme suivant:

(2.1) THEOREME. Une G-action o: G X S"— 8" est une action QL,
associée a laction linéaire o': G — O,.,, Si et seulement si il existe un
G-cobordisme (B,B) de (S*,a’) vers (S",0) qui est G-inversible a
droite. Dans ce cas, B est toujours un h-cobordisme entre deux copies
de S™.

Remarque. Un G-cobordisme (W, M, N) qui est un A-cobordisme (comme
dans le théoréme 2.1) n’est en général pas un k-cobordisme de G-variétés,
notion qui conduit au théoreme du s-cobordisme équivariant. Dans la
définition d’un A-cobordisme de G-variétés, on demande que, pour tout sous-
groupe H de G, les variétés de points fixes (W, MH, NH) soient également
des h-cobordismes (voir [Ro], Section 3). Les exemples traités ci-dessous ne
satisfont pas a cette condition.

Démonstration. Supposons que la G-action o soit QL. Il existe donc un
plongement de G-variétés e: (S”,a) & (R7?+1,a") tel que X = e(S”) englobe
O. En le composant au besoin avec une homothétie, on peut supposer que X
englobe la sphére de rayon 1 et que X est elle-méme englobée par la sphére
de rayon r > 1. La région B; de R”*! comprise entre S” et X est un G-
cobordisme (entre (S”,a") et (X,a’) qui est G-inversible a droite. En effet,
son inverse est la région C; comprise entre X et rS”. Soient M(e) le mapping-
cylindre du G-difféomorphisme e: S* — X et M(e~!) celui de son inverse. Le
G-cobordisme (B, ) cherché de (S, a”) vers (S",a) est B = B, U M(e~!) et
son inverse a droite est C = C; U M(e).

Reciproquement, soit (B,B) un G-cobordisme de (S”,a") vers (S”, o) et
(C,v) un inverse a droite de (B, B). Il existe donc un G-difféomorphisme E de
A U Bsurla G variété ({x eR"*1 |1 < | x | < 2}, a’) qui est Pidentifica-
tion naturelle sur les bords. La restrictionede Ea A n B = S$” donne un G-
plongement de (S”, a) dans (R”*!,”), prouvant que a est une action QL.
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Il reste a démontrer que B est un A-cobordisme. Pour cela, on démontre
que B est simplement connexe et que les deux inclusions S” C B induisent
des isomorphismes sur ’homologie entiére. Ceci s’obtient en appliquant le
théoréme de Seifert-Van-Kampen et la suite de Mayer-Vietoris au diagramme
co-cartésien

s" S B
£ 1
C S7x [0,1].

(2.2) Exemples. Soit M™ une variété contractile dont le bord V' = dM n’est
pas simplement connexe (V est une sphére d’homologie; c.f. [Ke] pour des
exemples).

Soit D un n-disque compact dans intM et soit A = M — intD. Considérons
deux copies M, et M, de M et construisons la variété

wrel = (My x [0,1])  (M; X [0,11)/{(x1,0) = (x;,0)[x; = x, € A}

formée de deux copies de Mx[0, 1] collées le long de A. La variété W, munie
de I’involution échangeant (xi, f) avec (x,, ) est un A-cobordisme de S” vers la
variété X = M Uy M qui est difféomorphe a S”si n > 5, par le théoréme du
h-cobordisme. Le méme théoréme montre que (W, X, S") est le C,-inverse a
droite de (W,S",X) (car A uy A = 8""1 x [0,1]). L’involution sur X est
donc QL par le théoreme 2.1, associée a la réflexion par rapport a un hyper-
plan. Mais ces deux involutions ne sont pas topologiquement conjuguées
puisque leurs espaces de points fixes (S”"~! et V) ne sont pas homéomorphes.
(voir fig. 2)

X=8"

FIGURE 2
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3. ACTIONS LIBRES — RESULTATS GENERAUX

Soit G un groupe de Lie compact. Si a: G X $” = S" est une action, on
dénotera par V, ’espace des orbites. Rappelons que si o est libre, V, est une
variété différentiable et la projection S” = V, est un G-fibré principal (voir
[Br], paragraphes II.1 et I1.5). Le but de ce paragraphe est de démontrer le
théoréme suivant:

(3.1) THEOREME. Soient o,0’:G X S8"— 8" deux actions libres, ou G
est un groupe de Lie compact. On suppose que a.’ est une action linéaire.
Alors:

a) o est différentiablement conjuguée a o’ si et seulement si Vy et
V4, sont difféomorphes.

b) a est topologiquement conjuguée a o’ si et seulement si V. et Vo
sont homéomorphes.

¢) Si n—dimG >4, a estuneaction QL associéea o’ siet seule-
ment si V, et V, sont h-cobordantes.

d) Si n—dimG >4, o estuneaction QL associéea o’ siet seule-
ment si Vy, X R et Vy X R sont difféomorphes.

La démonstration de (3.1) utilise deux lemmes, probablement bien connus
des spécialistes:

(3.2) LEMME. Soit o une action linéaire d’un groupe de Lie G sur S".
Supposons qu’il s’agisse d’une action libre. Alors, G est ou bien fini ou
bien isomorphe a S' ou S3. De plus:

a) Si G=S', alors n=2k+ 1 et a estlinéairement conjuguée a
I’action diagonale standard de S' sur l’espace complexe Ck+1,

b) Si G=S83 alors n=4k +3 et o est linéairement conjuguée a
[’action diagonale standard de S3 sur [’espace quaternionique H*+1,

Démonstration. Les sous-représentations irréductibles de o donneront
aussi une action libre sur leur spheére. On peut donc se restreindre au cas ou
a est irréductible. Supposons tout d’abord que G est connexe.

Si G est abélien et a: G — SO, est irréductible, alors » = 2. Comme o
doit étre injectif pour donner une action libre sur S!, on aura G = S! et a est

I’identité ou la conjugaison complexe, qui sont linéairement conjuguées dans
le groupe O,.
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Dans le cas non-abélien, I’argument ci-dessus s’applique au tore maximal
de G qui doit donc étre de dimension 1. Cela implique que G est isomorphe
a S3 ou SOs. La liste des représentations irréductibles de ces deux groupes est
connue ([Vi], pp. 78-79 et 113). On vérifie aisément que les représentations
irréductibles de SO; admettent un vecteur de groupe d’isotripie SO, et que,
pour celles de S?3, seule la représentation standard sur H est sans valeur
propre 1. Dans le cas général, on peut appliquer ce qui précéde a la composante
connexe G; de I’¢lément neutre de G. On a donc G, = S! ou S3. Occupons-
nous du premier cas, le cas G = S3, qui se traite similairement, sera laissé au
lecteur. On peut donc identifier le quotient G,\S3 avec CP* de maniére que
le S!-fibré principal S* = CP* est le fibré de Hopf.

Soit v € G et dénotons par y sa classe dans G\\G = 7y(G). Ce dernier
groupe opére librement sur G\S" = CP¥*, ce qui nous permet de considérer
la paire (y,y) comme un morphisme du fibré de Hopf n sur lui-méme:

Y

Sn — Sn

L bn

CP¢¥ > CP*

I’existence de y au-dessus de y n’est possible que si y induit ’identité sur
H?*(CP*;Z) et donc sur toute la cohomologie de CP* Son nombre de
Lefschetz est donc positif, ce qui, par le théoréme du point-fixe de Lefschetz,
contredit le fait que y n’a pas de point fixe.

(3.3) LEMME. Soit (W",M,N) un h-cobordisme de dimension n > 5.
Alors W est inversible et M X R est difféeomorphe a N X R.

Démonstration. Si n > 5, 'inversibilité de W est classique ([Po], Corol-
laire 6, p. 18). Dans le cas n = 5, on considere W x [0,1] comme un A-
cobordisme entre M X [0,1] et P = W x {0} u N x [0,1] U W x {1}. Soit
(Z,M x [1,2],0) un h-cobordisme tel que sa torsion de Whitehead
T(Z,M X [1,2]) soit égalea —t (W x [0,1],M x [0,1]) = —7(W,M). L’union
de W x [0,1] avec Z (le long d’un col de M X {1} dans W x {1} et dans Q)
donne un s-cobordisme entre M X [0,2] et P u Q. Par le théoreme du s-
cobordisme, P U Q = W x {0} u (P U Q) — W x {0}) est difféomorphe a
M x [0,2]. On voit que W est inversible & droite. Un argument similaire
 montre que W est inversible a gauche.
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On a donc, si n>4, un h-cobordisme (W, N, M) avec
WuW=MxI[0,1]1et Wu W = N x [0,1]. Ceci montre que M X R est
difféomorphe a N X R par P’argument classique:

M><R=...U(WUW)U(WUW)U...
:...U(WU W)U(Wu W)yu ...=NXR.

Preuve du théoréme (3.1). Démontrons tout d’abord le point a). Par le
lemme 3.2, il suffit de considérer les cas G fini, G = S' et G = §°.

Démonstration de a) pour G fini. Soit h: V, = V. un difféomorphisme.
Les projections S” — V, et S” = V. s’identifient aux revétements universels
de V, et de V,.. Le difféomorphisme 4 se reléve donc en un difféomorphisme
h:Sn— Sn qui est G-équivariant.

Démonstration de a) pour G = S'. Par le lemme 3.2 a), la variété V. est
difféomorphe a I’espace projectif complexe CP*~1. On a donc un difféomor-
phisme 4: V, — CP*. La composition de la projection S” — V, avec A donne
un S!-fibré principal {:S” — CP* Rappelons que le fibré de Hopf
@: S" — CP* est universel pour les S!-fibrés principaux sur des complexes de
dimension 2k. On a donc un morphisme de fibrés:

Sn L Sn
¢ | I

cpr L cp+
et la classe d’homotopie de f (composée avec ’inclusion de CP* dans CP~)
représente la 1t classe de Chern ¢; (§) € H*(CP*;Z). Comparons les suites
exactes d’homotopie de ces fibrés:

0 = m(S") = M (CP¥) = 1y (SY) = 7y (S") = 0
l L mf I l

0 = m2(S") = m(CPX) = 1, (') = mi(S") = 0

Comme 7, (CP*) = H,(CP¥), on a que 7,f est la multiplication par ¢;(E’). Vu
que 7;(S") = 0, il en résulte que ¢;(E’) = = 1. On peut donc choisir le
morphisme de fibré ci-dessus de maniére que fsoit un difféomorphisme (’iden-
titit€ ou la conjugaison complexe). L’application f~ : " — 87 sera alors un
difféomorphisme S!-équivariant.
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Démonstration de a) pour G = S3. On procéde exactement comme dans
le cas de S!. Le role de CP* est remplacé par I’espace projectif quaternionien
HP*. Tout S3-fibré sur un complexe de dimension 4k est induit du fibré de
Hopf S” — HP*. On a donc un morphisme de S3-fibrés:

sno b g

¢l I

HP* 5 HP
et la classe d’homotopie de f représente la seconde classe de Chern
c,(E) € H*(HP*;Z) = Z. Comme 73(S") = 0, on déduit, comme dans le cas
précédent que ¢;(E’) = +1 et donc f est homotope a un difféomorphisme
(donc f a un difféomorphisme équivariant).

Démonstration de b. Elle est en tout point semblable a celle de a).

Démonstrations de c) et d). Supposons que o est QL associée a 1’action
linéaire a.’. Soit (B, ) un G-cobordisme G-inversible a droite, entre (S7,a") et
(S”,a) comme construit dans la démonstration du théoréme (2.1). On vérifie
sur la construction que ’action de G sur B est libre. Comme B est un A-
cobordisme, le quotient W = G\B est donc un A-cobordisme entre V- et V,,.
Par le lemme (3.3), on a un difféomorphisme de HV, X ]0, oo |
= Vy X 10, oo .

Pour terminer la démonstration, il suffit de construire un difféomorphisme
G-équivariant Ah: (S" X 10, oo [,a) = (S” X ]0, o [a") (actions produit). En
effet, comme (S” X J0, o [a’) est G-difféomorphe a (R**! — {0},a")
(puisque a’ est linéaire), #|S™ x {0} sera alors un plongement S'-équivariant
de (S”,0) dans (R"*1,0."), ce qui montre que o est QL associée a o’.

Le difféomorphisme 4 se construit de la méme mani¢re que dans le cas a)
(remplacant V, par V, X R, etc. les détails sont laissés au lecteur. Enfin, si
h:VyxR—>V, xR est un difféomorphisme, le cobordisme entre
h(V, x {0} et V,. x {t}, pour ¢ assez grand, est clairement un Z-cobordisme.

4. ACTIONS LIBRES D’UN GROUPE CYCLIQUE FINI

Soit C, le groupe cyclique d’ordre g. Dans ce paragraphe, nous allons
démontrer les deux théorémes suivants:

(4.1) THEOREME. Si q = 2, 3, 4 ou 6, toute action QL libre de C, sur
Sn(n > 5) est différentiablement conjuguée a son action linéaire associée.
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(4.2) THEOREME. Soit o une action linéaire libre de C, sur S”. Suppo-
sonsque q + 2,3, 4oubetn > 5. Alors il existe une infinité dénombrable
d’actions QL de C, sur S" associées a a, quisont deux-d-deux non-
topologiquement conjuguées et dont aucune n’est topologiquement conjuguée
a une action linéaire.

Démonstration de (4.1). Soit o une action linéaire libre de C, sur S” et
o’ une action QL associée a a. Par le théoréme (3.1) cas c), les variétés quotient
V, et V,  sont h-cobordantes. Si ¢ = 2, 3, 4 ou 6, le groupe de Whitehead
Wh(C,) est nul [Co], (11.5). Comme 7;(V,) = C, et n =5, le théoréme du
s-cobordisme [Ke], p. 32 assure que V, et V,- sont difféomorphes. Les actions
a et o’ sont donc différentiablement conjuguées par le cas a) du théoréme (3.1).

Démonstration de (4.2). Si g # 2, 3, 4 ou 6, le groupe de Whitehead
Wh(C,) est infini dénombrable ([Col, (11.5)). Pour chaque y € Wh(C,), il
existe un A-cobordisme (W,,Vy, Vyy) dont la torsion de Whitehead
T(W,, Vo) =v e Wh(V,) ([Kel, p. 32). Le revétement universel WY de W, est
un A-cobordisme entre S” et V). Par le théoréme du A-cobordisme, on en
déduit que V,, est difféomorphe a S”, ce qui donne une action QL a(y) sur
S associée a a (par le cas c) du théoréme (3.1)).

Nous affirmons que les classes de conjugaison topologique de ces
(S™,a(y)) contiennent au plus un nombre fini d’éléments. En effet, dans le
cas contraire, on aurait, pour une collection infinie de y € Wh(C,), un
homéomorphisme &, de V,(y) sur une variété fixe 4. Soit g,: V, = Vi la
composition de I’inclusion V, C W, avec la rétraction de W, sur V,,, et soit
Jy: Vo = A Péquivalence d’homotopie f, = h, © g,. Comme t(h,) = 0 [Co],
p. 102, on a

T(H) = hy(t(gy) = hyp(y + (= D+ 1y)

(voir [Mi], p. 401). Dans Wh(C,) on a y = y par [Mi], Lemma 6.7 et [Co],
11.5. D’ou t(f,) = A,+(2y). On en déduit que pour une infinité de vy, les appli-
cations f, sont deux-a-deux non-homotopes. Ceci contredit le fait, facilement
visible par la théorie des obstructions, que I’ensemble des classes d’homotopie
d’équivalences d’homotopie de V, dans A est fini.

On peut donc extraire un ensemble dénombrable Q de (S, a.(Y)) qui sont
deux-a-deux non-topologiquement conjuguées. Les classes de conjugaison de
représentations lin€aires de C? dans R”+! étant en nombre fini, seul un sous-
ensemble fini de Q peut donc étre constitué d’actions topologiquement
conjuguées a une action linéaire.
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(4.3) Remarques.

a) Les actions du théoreme (4.2) sont essentiellement celles construites par
Milnor [Mi2]. A I’époque, on ne disposait pas de I’invariance topologique de
la torsion de Whitehead, ce qui empéchait Milnor de déduire qu’elles n’étaient
pas topologiquement conjuguées a une action linéaire.

b) La démonstration de (4.2) se généralise au cas d’actions libres d’un
groupe fini G sur S”, pourvu que Wh(G) contienne une infinité d’éléments 1
tels que T = 1. C’est, par exemple le cas du groupe du dodécaédre a 120 élé-
ments (voir [Ha], chapitre 5) qui agit librement sur S*!,

c¢) Il est connu que le groupe de chirurgie L,(C,) est infini si ¢ > 2 [Ba].
On déduit alors de la suite exacte de la chirurgie (et de la théorie du lissage)
pour un espace lenticulaire V¢ avec groupe fondamental C, qu’il existe une
infinit¢ dénombrable de variétés W° homotopiquement équivalente a V qui
sont deux-a-deux non-topologiquement A-cobordantes. Leurs revétements uni-
versels sont des sphéres d’homotopie de dimension 6 donc difféomorphes a
S¢. Cet argument montre que pour g > 2, il existe une infinité d’actions
libres de C, sur S¢ qui sont deux-a-deux non-topologiquement conjuguées et
dont aucune n’est topologiquement conjuguée a une action QL.

5. ACTIONS LIBRES DE S'
Nous commencerons par les actions libres de S! sur S3.

(5.1) PROPOSITION. Toute action libre de S! sur S?* est différentiablement
conjuguée a [’action standard.

Démonstration. Une action libre de S! sur S° donne un fibré principal
p:S?— SN\S3 = V (voir le paragraphe 3). On en déduit que V est une surface
qui, par suite exacte du fibré p est simplement connexe. Il s’en suit que V est
difféomorphe a S2. Le fibré p est induit du fibré de Hopf par une application
f:V— 82, Comme dans la démonstration du cas a) du théoréme (3.1), on
déduit que le degré de fest +1 et donc f est homotope a un difféomorphisme.
Ce difféomorphisme se reléve, au niveau des espaces totaux, en un difféo-
morphisme S!-équivariant qui conjugue notre action de départ avec 1’action
standard.

(5.2) THEOREME. Toute action libre QL de S' sur S", avec n 2= 7,
est différentiablement conjuguée a !’action standard.

e 4y
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Démonstration. Soit (S",a) une telle action. Par le lemme (3.2), on sait
que P’action linéaire associée a’ est standard. Par le théoréme (3.1), il existe
un A-cobordisme (W",V,.,V,). Comme W est simplement connexe €t 7 >,
le théoréeme du A-cobordisme implique que W est difféomorphe a
V., x [0,1]. On en déduit, par le cas a) du théoréme (3.1) que a et o’ sont
différentiablement conjuguees.

(5.3) Remarque. 1l existe, en général, une infinité dénombrable d’actions
libre de S! sur S” qui sont deux-3-deux non-topologiquement conjuguées
(voir [Hs] pour un exemple dans le cas n = 11). Ces actions ne sont donc pas
topologiquement conjuguées a une action QL.

La situation pour les actions libres de S! sur S”, pour n > 7 peut donc se
schématiser de la facon suivante:

actions linéaires = g actions QL #rop actions générales.
En revanche, pour les actions libres de S! sur S5, on va voir que ’on a:
actions linéaires =rop actions QL = ppr actions générales

et que l’égalité actions linéaires =, actions QL constitue un probleme
ouvert. De maniere précise:

(5.4) THEOREME. a) Toute action libre de S' sur S° est différentiable-
ment conjuguée a une action QL et topologiquement conjuguée a [’action
standard.

b) L’ensemble des classes de conjugaison différentiable d’actions QL
libres de S! sur S° se surjecte sur [’ensemble des classes de difféo-
morphisme de structures différentiables sur CP?2. Les préimages de cette
surjection ont au plus 2 éléments.

Remarque. La détermination de ’ensemble des classes de difféomor-
phisme de structures différentiables sur CP? constitue un probléme ouvert.
On ne sait méme pas si cet ensemble est fini (le méme ensemble, pour certaines
sommes connexes de + CP?, est infini [FM]). Dans 1’état actuel des connais-
sances il est bien sfir possible que cet ensemble soit réduit a un seul élément,
auquel cas toute action libre serait différentiablement conjuguée a 1’action
standard (voir le corollaire (5.5) ci-dessous).

Démonstration. Soit (S°,a) une action différentiable libre de S! sur S3.
Le quotient V, = SI\S3 est une variété de dimension 4 et la projection
p: S°>— Vy est un S!-fibré principal, induit du fibré de Hopf 1. On a donc un
morphisme de S!-fibrés:
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ORI £
lr Lo
v, - cp?

Avec la suite exacte d’homotopie, on vérifie que f est une équivalence d’homo-
topie. Un théoréme de C.T.C. Wall [Ki], Theorem 1 p. 59 implique que V,
et CP? sont A-cobordante ce qui, par le théoréme (3.1), entraine que a est dif-
férentiablement conjuguée a une action QL (I’action linéaire associée étant
standard). De plus, le théoréme du A-cobordisme topologique de M. Freed-
mann [Fr], théoreme 1.3 implique que V, est homéomorphe a CP2. L’action
o est donc topologiquement conjuguée a I’action standard (Théoreme (3.1),
cas b). Ceci démontre le point a) et permet de définir 1’application du point
b): a une action QL libre o on associe sa variété quotient V.

Soit V une variété différentiable homéomorphe a CP2. Par le théoréme de
Wall cité ci-dessus, il existe un A-cobordisme (W, CP?2, V). Le fibré de Hopf
sur CP? s’étend en un S!-fibré principal sur W qui, par restriction a ¥ donne
un S'!-fibré principal £ — V. Par le théoréme du A-cobordisme, E est difféo- -
morphe & S°. On obtient ainsi une action a libre de S! sur S5 qui est QL par
le théoréme (3.1), avec V, = V. Cela démontre que notre correspondance est
surjective. D’autre part, soient o et o’ sont deux actions libres dont les
quotients sont difféomorphes a V. Les projections de S° sur V, et V, sont
donc équivalentes a deux S!-fibrés principaux sur ¥. Comme dans la démons-
tration du théoréme 3.1, on vérifie que les premiéres classes de Chern de ces
fibrés sont des générateurs de H?(V;Z) = Z. Cela montre que V a au plus
deux préimages qui seront confondues si et seulement si V possede un difféo-
‘morphisme sur lui-méme induisant la multiplication par —1 sur H?*(V;Z).
Cela achéve la preuve du point b) et démontre le corollaire suivant:

(5.5) COROLLAIRE. Les deux énoncés suivants sont équivalents:

1) Toute action libre de S' sur S° est différentiablement conjuguée a
I’action standard.

2) Toute variété différentiable homéomorphe a CP? est difféomorphe a
CP?2.
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6. ACTIONS LIBRES DE S°3

Les résultats pour S3 sont similaires a ceux pour S' (a part la proposi-
tion 5.1 qui ne se retrouve que partiellement dans 6.4.a). Les démonstrations
sont identiques, le role de CP?2 étant tenu par HP! = S* (et la 1'¢ classe de
Chern étant remplacée par la seconde). Les détails sont donc laissés au lecteur.

(6.2) THEOREME. Toute action libre QL de S* sur S", avec n = 11,
est différentiablement conjuguée a [’action standard.

(6.3) Remarque. 1l existe, en général, une infinité dénombrable d’actions
libre de S3 sur S” (n > 11) qui sont deux-a-deux non-topologiquement
conjuguées (voir [Hs] pour un exemple dans le cas n = 11). Ces actions ne sont
donc pas topologiquement conjuguées a une action QL.

Comme dans le paragraphe précédent, la situation des actions de S° sur
S7 est trés différente:

(6.4) THEOREME. a) Toute action libre de S* sur S7 est différentiable-
ment conjuguée a une action QL et topologiquement conjuguée a l’action
standard.

b) L’ensemble des classes de conjugaison différentiable d’actions QL
libres de S3 sur S’ se surjecte sur [’ensemble des classes de difféo-
morphisme de structures différentiables sur S*. Les préimages de cette sur-
Jection ont au plus 2 éléments.

Remarque. La détermination de I’ensemble des classes de difféo-
morphisme de structures différentiables sur S* constitue un probléme ouvert
et on ne sait méme pas s’il est fini. L’hypothése que cet ensemble est réduit
a un seul élément est connue sous le nom de «conjecture de Poincaré différen-
tiable».

Comme dans la preuve de 5.5, on montre que la préimage d’une variété
¥ homéomorphe a S* par la surjection de 6.5.b est unique si et seulement si
V possede un difféomorphisme sur elle-méme renversant I’orientation (rappe-
lons que ce n’est en général pas le cas pour des sphéres d’homotopie de dimen-
sion supérieure ou pour certaines structures différentiables exotiques sur R4).
Cependant, comme c’est le cas pour V = S4, on a:

(6.5) COROLLAIRE. Les deux énoncés suivants sont équivalents:

1) Toute action libre de S* sur S est différentiablement conjuguée a
[’action standard.

2) Toute variété différentiable homéomorphe a S* est difféomorphe a
S* (conjecture de Poincaré différentiable en dimension 4).
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7. EXEMPLES D’ACTIONS QUASI LINEAIRES

Dans ce paragraphe, nous considérerons la «donnée» suivante:

— Mn"+1 est une variété riemanienne,
— G est un groupe de Lie compact opérant sur M par isométries,

— f: M — R est une application différentiable telle que f(gx) = f(x) pour
tout xe M et g € G.

— L’application f a un unique point critique p € M, qui est un extremum.
Le point p est donc un point fixe pour I’action de G. On choisit une isométrie
h entre I’espace tangent 7,M et R"*! avec son produit scalaire standard.
L’action induite de G sur T,M est donc transportée par A en une action
orthogonale de G sur R”*! que nous noterons a,

— Soit ¢ € R une valeur réguliére de f. On suppose que la variété
SF'({q}) est difféomorphe a S”. Remarquons que f~!({q}) est une G-variété.

FIGURE 3

Pour une telle donnée, nous allons démontrer les trois propositions suivan-
tes:

(7.1) PROPOSITION. L’actionde G sur f~'({q}) est QL associéea a.

' (7.2) PROPOSITION. Supposons que p est un extremum non dégénéré.
- Alors laction de G sur f ~1({q}) est différentiablement conjuguée a «a.
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(7.3) PROPOSITION Soit o’ une action QL libre de G sur Sn
associée & ’action linéaire a. Alors il existe une donnée comme ci-dessus
pour laquelle Iaction de G sur f~'({q}) est différentiablement conjuguée

I

a a .

Preuves. Soit U un voisinage de O dans R”*! tel que
® = exp © h: U~ M fournisse une carte au voisinage de p. On supposera
que p est un minimum et que f(p) = 0. Comme p est I’unique point critique
de f, il existe g’ tel que 0 < ¢’ < q,f ~'({q’}) C o(U) et £ ~'({g}) admet un
difféomorphisme G-équivariant sur f ~'({¢’}) (on utilise le flot du champ
grad f/ | grad f| (voir [Mi3], Theorem 3.4). Comme ¢ ~'| f~'({g}) est un
plongement G-équivariant de f~-!({q}) dans (R"*!,a) cela prouve la
proposition (7.1).

Si maintenant p est un minimum non-dégénéré, le lemme de Morse fournit
une carte y telle que fow - '(Xi,...,Xy41) = X> + ... + x>, ,. Dans ce
systéme de coordonnées, les variétés de niveau de f sont des spheéres standards
qui intersectent donc chaque rayon de R”+! transversalement. On en déduit
que (fo )~ 1({q’}) intersecte chaque rayon de R"*! transversalement, si g’
est suffisamment petit. On a alors un difféomorphisme équivariant de
(f-0)~'({g'}) sur la sphére de rayon 1 par la projection radiale. Cela
démontre (7.2). Pour démontrer (7.3), on va construire la fonction f pour
M = R"*! muni de P’action a. Si o’ une action libre QL associée a o, on a,
par le point d) du théoréme (3.1), un difféomorphisme G-équivariant
g:(S"xR,a) = (S" xR, a’) (actions produits). Posons g(x,?) = (g,(x, 1),
g,(x,1)). Soit

w(x, t) = es2xlogh)
On a donc un difféomorphisme G-équivariant de
(R™*1 = {0}, @) = (8" X ]0, o[, o)
sur (§” X 10, o[, a”) pour les actions produits donné par
(e, 1) = (8106 1), w(x, 1))
On définit f: R”*! — R par:
SO t)y =e- /v et £0)=0.

Comme le difféomorphisme g est en quelque sorte «périodique» (voir sa cons-
truction dans la preuve de (3.1)), on a que toutes les dérivées partielles, de tout
ordre, de g sont bornées et de plus # — 2 < g,(x,#) < ¢ + 2. On en déduit que
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toutes les dérivées partielles de w(x, ¢) sont bornées. Il s’en suit que f est de
classe C* avec toutes les dérivées partielles s’annulant en 0. On vérifie
aisément que f a les propriétés voulues, ce qui démontre (7.3).
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