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L'Enseignement Mathématique, t. 38 (1992), p. 55-70

ACTIONS QUASI-LINÉAIRES SUR LES SPHÈRES

par Jean-Claude Hausmann

Introduction

Soit G un groupe de Lie compact. Une représentation a: G On + \ de G

induit une action G x Sn -+ Sn. Une telle action est dite linéaire (ou orthogonale).

Cet article est motivé par la remarque que l'on peut se servir de a pour
engendrer d'autres actions sur Sn. Pour cela, considérons un plongement
e: Sn c* R"+J, On suppose que l'image X e(Sn) est invariante par l'action
de G sur R" + 1, c'est-à-dire que GX X. Pour simplifier, nous supposerons
également que X englobe O (c'est-à-dire que O est dans la composante relativement

compacte du complémentaire de A). La figure 1 ci-dessous donne un



56 J.-C. HAUSMANN

exemple pour le cas n 1, G C3 (cyclique d'ordre 3) ou (D3 (dihédral). On
obtient alors une nouvelle action

G x Sn -> Sn

(g,x) ^ g*x 1

Une telle action sera dite quasi-linéaire (QL) (d'action linéaire associée a).
Nous nous proposons, dans cet article, d'étudier les questions suivantes:

1) Une action QL est-elle toujours différentiablement conjuguée à son
action linéaire associée? (C'est-à-dire, existe-t-il un difféomorphisme
h: Sn - S" tel que g*x h ~ lgh{x))l)

2) Une action QL est-elle toujours topologiquement conjuguée à son action
linéaire associée? (C'est-à-dire, existe-t-il un homéomorphisme h: Sn Sn tel

que g*x - h~lgh(x))l)
3) Toute action de G sur Sn est-elle différentiablement (ou topologiquement)

conjuguée à une action QL1

On verra que la réponse à ces questions, pour différents n et G, est parfois
positive, parfois négative et parfois ouverte et équivalente à un problème
célèbre, par exemple la conjecture de Poincaré différentiable en dimension 4.

Il est à remarquer que ces questions, dont l'énoncé est extrêmement élémentaire,

mettent en jeu, pour leur résolution, une partie importante des grandes

techniques de la topologie différentielle.
Des exemples naturels d'actions QL sont donnés au paragraphe 7. On en

trouvera aussi dans [Ha2], paragraphe 4.

Je tiens à remercier P. Vogel et M. Rothenberg pour d'intéressantes discussions.

2. G-Cobordismes d'actions

Soit G un groupe de Lie. Nous travaillons dans la catégorie des G-variétés.

Un objet de cette catégorie est une paire (V, a), où V est une variété différentiable

(C00) et a: G x VV est une action différentiable. Une telle acton
définit (et est déterminée par) un homomorphisme G DIFF(F), où DIFF(F)
dénote le groupe des difféomorphismes de V. Cet homomorphisme sera également

dénoté par a. De ce point de vue, un morphisme de (Vu oq) vers (V2, a2)

est une application différentiable /: Vl -> V2 qui est G-équivariante, ce qui

peut s'écrire fo oq a2 °/.
Un G-cobordisme entre deux G-variétés (Fi,ai) et (V2, a2) est une G-

variété (B, ß), où (B, V1} V2) est un cobordisme (i.e. dB V} II V2) tel que la
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G-action ß: Gx(B, Vu V2) (B, Vu V2) étende ai et a2. Un tel cobordisme est

dit G-inversible à droite s'il existe un G-cobordisme (G, y) entre (V2, a2) et

(Fi, ai) et un G-difféomorphisme

h: (Bu v2C, Vu Vù (Vi x [0,1], U x {0}, V, x {1})

valant l'identité sur le bord (où Vx x [0,1] est muni de la G-action produit).

Rappelons qu'un cobordisme W, M, N) est un h-cobordisme si les inclusions

MC W et N C W sont des équivalences d'homotopie.

Les résultats relatifs aux actions QL se déduiront du théorème suivant:

(2.1) Théorème. Une G-action a: G x Sn -> Sn est une action QL,
associée à Faction linéaire a' : G On+h si et seulement si il existe un

G-cobordisme (B, $) de (Sn, a') vers (Sn, a) qui est G-inversible à

droite. Dans ce cas, B est toujours un h-cobordisme entre deux copies
de S".

Remarque. Un G-cobordisme (W,M,N) qui est un /z-cobordisme (comme
dans le théorème 2.1) n'est en général pas un /^-cobordisme de G-variétés,
notion qui conduit au théorème du ^-cobordisme équivariant. Dans la
définition d'un h-cobordisme de G-variétés, on demande que, pour tout sous-

groupe H de G, les variétés de points fixes (WH,MH,NH) soient également
des /z-cobordismes (voir [Ro], Section 3). Les exemples traités ci-dessous ne

satisfont pas à cette condition.

Démonstration. Supposons que la G-action a soit QL. Il existe donc un
plongement de G-variétés e: (Sn,a) ^ (R" + 1,a') tel que X e(Sn) englobe
O. En le composant au besoin avec une homothétie, on peut supposer que X
englobe la sphère de rayon 1 et que X est elle-même englobée par la sphère
de rayon r > 1. La région Bx de R" + 1 comprise entre Sn et X est un G-
cobordisme (entre (Sn, a') et (X,a') qui est G-inversible à droite. En effet,
son inverse est la région Cx comprise entre X et rSn. Soient M(e) le mapping-
cylindre du G-difféomorphisme e: Sn -> X et M(e~{) celui de son inverse. Le
G-cobordisme (B, ß) cherché de (Sn, a') vers (Sn, a) est B Bx u M(e~l) et

son inverse à droite est C Cx u M(e).

Réciproquement, soit (B, ß) un G-cobordisme de (Sn, a') vers (S", a) et

(G, y) un inverse à droite de (By ß). Il existe donc un G-difféomorphisme E de
A u B sur la G variété ({x eR" + 1

| 1 < || x || < 2}, a') qui est l'identification
naturelle sur les bords. La restriction e de E ä A n B Sn donne un G-

plongement de (Sn, a) dans (R* + 1,'), prouvant que a est une action QL.
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Il reste à démontrer que B est un /z-cobordisme. Pour cela, on démontre

que B est simplement connexe et que les deux inclusions Sn C B induisent
des isomorphismes sur l'homologie entière. Ceci s'obtient en appliquant le

théorème de Seifert-Van-Kampen et la suite de Mayer-Vietoris au diagramme
co-cartésien

(2.2) Exemples. Soit Mn une variété contractile dont le bord V dM n'est

pas simplement connexe (V est une sphère d'homologie; c.f. [Ke] pour des

exemples).
Soit D un A-disque compact dans intM et soit A M - intD. Considérons

deux copies Mx et M2 de M et construisons la variété

W»+> (M, x [0,1]) (M2 x [0,l])/{(*,,0) (*2,0)1*! *2 A)

formée de deux copies de Mx[0,1] collées le long de A. La variété W, munie
de l'involution échangeant (xut) avec (x2, t) est un /z-cobordisme de Sn vers la
variété X M u v M qui est difféomorphe à Sn si n ^ 5, par le théorème du
/z-cobordisme. Le même théorème montre que (W,X, Sn) est le C2-inverse à

droite de (W,Sn,X) (car A uv A Sn~l x [0,1]). L'involution sur X est

donc QL par le théorème 2.1, associée à la réflexion par rapport à un hyper-
plan. Mais ces deux involutions ne sont pas topologiquement conjuguées

puisque leurs espaces de points fixes (S"-1 et V) ne sont pas homéomorphes.
(voir fig. 2)

sn
>P

c» B
q

C S" x [0, 1]

X=-Sn

D

V--
sn-i

Figure 2
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3. Actions libres - Résultats généraux

Soit G un groupe de Lie compact. Si a: G x Sn -> Sn est une action, on

dénotera par Va l'espace des orbites. Rappelons que si a est libre, Va est une

variété différentiable et la projection Sn Va est un G-fibré principal (voir

[Br], paragraphes II. 1 et ILS). Le but de ce paragraphe est de démontrer le

théorème suivant:

(3.1) Théorème. Soient a,a': G x Sn -+ Sn deux actions libres, où G

est un groupe de Lie compact. On suppose que a' est une action linéaire.

Alors:

a) a est différentiablement conjuguée à a' si et seulement si Va et

Var, sont difféomorphes.

b) a est topologiquement conjuguée à a' si et seulement si Va et Va>

sont homéomorphes.

c) Si n — dim G ^ 4, a est une action QL associée à ou si et seulement

si Va et Va' sont h-cobordantes.

d) Si n - dim G ^ 4, a est une action QL associée à a' si et seulement

si Va x R et Va' x R sont difféomorphes.

La démonstration de (3.1) utilise deux lemmes, probablement bien connus
des spécialistes:

(3.2) Lemme. Soit a une action linéaire d'un groupe de Lie G sur Sn.

Supposons qu'il s'agisse d'une action libre. Alors, G est ou bien fini ou
bien isomorphe à S1 ou S3. De plus:

a) Si G S1, alors n - 2k 4- 1 et a est linéairement conjuguée à

l'action diagonale standard de S1 sur l'espace complexe Ck+l.

b) Si G S3, alors n 4k + 3 et a est linéairement conjuguée à

l'action diagonale standard de S3 sur l'espace quaternionique H*+1.

Démonstration. Les sous-représentations irréductibles de a donneront
aussi une action libre sur leur sphère. On peut donc se restreindre au cas où

a est irréductible. Supposons tout d'abord que G est connexe.
Si G est abélien et a: G SOn est irréductible, alors n — 2. Comme a

doit être injectif pour donner une action libre sur S1, on aura G S1 et a est

l'identité ou la conjugaison complexe, qui sont linéairement conjuguées dans
le groupe 02.
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Dans le cas non-abélien, l'argument ci-dessus s'applique au tore maximal
de G qui doit donc être de dimension 1. Cela implique que G est isomorphe
à S3 ou S03. La liste des représentations irréductibles de ces deux groupes est

connue ([Vi], pp. 78-79 et 113). On vérifie aisément que les représentations
irréductibles de S03 admettent un vecteur de groupe d'isotripie S02 et que,

pour celles de S3, seule la représentation standard sur H est sans valeur

propre 1. Dans le cas général, on peut appliquer ce qui précède à la composante
connexe G\ de l'élément neutre de G. On a donc G\ S1 ou S3. Occupons-
nous du premier cas, le cas G S3, qui se traite similairement, sera laissé au
lecteur. On peut donc identifier le quotient Gi\S3 avec CP* de manière que
le S^-fibré principal Sn CPk est le fibré de Hopf.

Soit y e G et dénotons par y sa classe dans G{\G - ir0(G). Ce dernier

groupe opère librement sur G\\Sn CP*, ce qui nous permet de considérer
la paire (y,y) comme un morphisme du fibré de Hopf r\ sur lui-même:

Sn Sn

i n in

CP* ^ CP*

L'existence de y au-dessus de y n'est possible que si y induit l'identité sur

H2(CP*;Z) et donc sur toute la cohomologie de CP*. Son nombre de

Lefschetz est donc positif, ce qui, par le théorème du point-fixe de Lefschetz,
contredit le fait que y n'a pas de point fixe.

(3.3) Lemme. Soit (Wn,M,N) un h-cobordisme de dimension n ^ 5.

Alors W est inversible et M x R est difféomorphe à iVxR.

Démonstration. Si n > 5, l'inversibilité de W est classique ([Po], Corollaire

6, p. 18). Dans le cas n 5, on considère W x [0,1] comme un h-

cobordisme entre M x [0,1] et P W x {0} u TV x [0,1] u W x {1}. Soit

(Z,M x [1,2],Q) un h-cobordisme tel que sa torsion de Whitehead

x(ZyM X [1,2]) soit égale à -t(W x [0,l],Mx [0,1])= -x{WtM). L'union
de W x [0,1] avec Z (le long d'un col de M x {1} dans W x {1} et dans Q)
donne un s-cobordisme entre M x [0,2] et P u Q. Par le théorème du s1-

cobordisme, P u Q W x {0} u ((P u Q) — W x {0}) est difféomorphe à

Mx [0,2]. On voit que W est inversible à droite. Un argument similaire
montre que W est inversible à gauche.



ACTIONS QUASI-LINÉAIRES SUR LES SPHÈRES 61

On a donc, si n > 4, un /z-cobordisme (W,NyM) avec

W u W M X [0,1] et W u W AT x [0,1]. Ceci montre que M x R est

difféomorphe à TV x R par l'argument classique:

M x R u (W u PL) u (JF u PF) u
u (PF u PF) u (PF u PF) u TV x R

Preuve du théorème (3.1). Démontrons tout d'abord le point a). Par le

lemme 3.2, il suffit de considérer les cas G fini, G S1 et G S3.

Démonstration de a) pour G fini. Soit h: Va -> Vun difféomorphisme.
Les projections S" Va et Sn F«' s'identifient aux revêtements universels
de Va et de Va*. Le difféomorphisme h se relève donc en un difféomorphisme
h : Sn Sn qui est G-équivariant.

Démonstration de a)pour G S1. Par le lemme 3.2 a), la variété Va> est

difféomorphe à l'espace projectif complexe CP^-1. On a donc un difféomorphisme

h: Va -> CPL La composition de la projection Sn Va avec h donne

un S^fibré principal S"CPL Rappelons que le fibré de Hopf
(p: S" CP^ est universel pour les S^-fibrés principaux sur des complexes de

dimension 2k. On a donc un morphisme de fibrés:

5" ^ S"

ï i 11

Cp*: Â CPk

et la classe d'homotopie de /(composée avec l'inclusion de CPk dans CP
représente la lre classe de Chern c, (4) e H2(CPk;Z). Comparons les suites
exactes d'homotopie de ces fibrés:

0 7t2(5") 71, (CP*) ^ 7t, (5 ' ^ 7t,(S") 0

I I »2/ 1 l

0 J12(S") - TI2(CP*) -» 71,(5') -» 71,(5") 0

Comme n2(CPk) H2(CP*),on a que 7t est la multiplication par c, (£"). Vu
que 71,(5") 0, il en résulte que c,(£") ±1. On peut donc choisir le
morphisme de fibré ci-dessus de manière que/soit un difféomorphisme (l'iden-
titité ou la conjugaison complexe). L'application / : 5" -» 5" sera alors un
difféomorphisme 5'-équivariant.
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Démonstration de a) pour G S3. On procède exactement comme dans

le cas de S1. Le rôle de CP* est remplacé par l'espace projectif quaternionien
HP*. Tout S3-fibré sur un complexe de dimension 4k est induit du fibré de

Hopf S" -> HP*. On a donc un morphisme de 53-fibrés:

S" ^ S"

c 1 | n

HP* -ï HP*
et la classe d'homotopie de / représente la seconde classe de Chern

c2(£) e H4(HP*;Z) Z. Comme 713(5") 0, on déduit, comme dans le cas

précédent que c2{E') ±1 et donc / est homotope à un difféomorphisme
(donc / à un difféomorphisme équivariant).

Démonstration de b. Elle est en tout point semblable à celle de a).

Démonstrations de c) et d). Supposons que a est QL associée à l'action
linéaire a'. Soit (#, ß) un G-cobordisme G-inversible à droite, entre (Sn,af) et

(Sn, a) comme construit dans la démonstration du théorème (2.1). On vérifie
sur la construction que l'action de G sur B est libre. Comme B est un h-

cobordisme, le quotient W G\B est donc un /z-cobordisme entre Va> et Va.

Par le lemme (3.3), on a un difféomorphisme de HVax ]0, 00 [

- La' x ]0, 00 [.

Pour terminer la démonstration, il suffit de construire un difféomorphisme
G-équivariant h: (Sn x ]0, 00 [5a) - (Sn x ]0, 00 [a') (actions produit). En

effet, comme (Sn x ]0, 00 [a') est G-difféomorphe à (R"+1 — {0},a')
(puisque a' est linéaire), /z | .S" x {0} sera alors un plongement S ^équivariant
de (Sn,a) dans (Rn + \a'), ce qui montre que a est QL associée à a'.

Le difféomorphisme h se construit de la même manière que dans le cas a)

(remplaçant Va par Va x R, etc. les détails sont laissés au lecteur. Enfin, si

h: Va x R -> La' x R est un difféomorphisme, le cobordisme entre

MLa x {0}) et Va. x {?}, pour t assez grand, est clairement un Ä-cobordisme.

4. Actions libres d'un groupe cyclique fini

Soit Cq le groupe cyclique d'ordre q. Dans ce paragraphe, nous allons

démontrer les deux théorèmes suivants:

(4.1) Théorème. Si q 2, 3, 4 ou 6, toute action QL libre de Cq sur
Sn (n ^ 5) est différentiablement conjuguée à son action linéaire associée.
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(4.2) Théorème. Soit a une action linéaire libre de Cq sur Sn. Supposons

que q ± 2, 3, 4 ou 6 et n ^ 5. Alors il existe une infinité dénombrable

d'actions QL de Cq sur Sn associées à a} qui sont deux-à-deux non-

topologiquement conjuguées et dont aucune n'est topologiquement conjuguée

à une action linéaire.

Démonstration de (4.1). Soit a une action linéaire libre de Cq sur Sn et

a' une action QL associée à a. Par le théorème (3.1) cas c), les variétés quotient
Va et Va> sont /z-cobordantes. Si q 2, 3, 4 ou 6, le groupe de Whitehead

Wh{Cq) est nul [Co], (11.5). Comme nfVa) =* Cq et n ^ 5, le théorème du

s-cobordisme [Ke], p. 32 assure que Va et Va' sont difféomorphes. Les actions

a et a' sont donc différentiablement conjuguées par le cas a) du théorème (3.1).

Démonstration de (4.2). Si q =f= 2, 3, 4 ou 6, le groupe de Whitehead

Wh(Cq) est infini dénombrable ([Co], (11.5)). Pour chaque y e Wh(Cq), il
existe un /z-cobordisme (Wy, Va, Va(y)) dont la torsion de Whitehead

t(Wy, Va) - y e Wh{Vj) ([Ke], p. 32). Le revêtement universel Wy de Wy est

un /z-cobordisme entre Sn et La(y). Par le théorème du /z-cobordisme, on en

déduit que La(Y) est difféomorphe à Sn, ce qui donne une action QL a (y) sur
Sn associée à a (par le cas c) du théorème (3.1)).

Nous affirmons que les classes de conjugaison topologique de ces

(Sn, a(y)) contiennent au plus un nombre fini d'éléments. En effet, dans le

cas contraire, on aurait, pour une collection infinie de y e Wh(Cq), un
homéomorphisme hy de La(y) sur une variété fixe A. Soit gy: Va-> Va(y) la
composition de l'inclusion Va C Wy avec la rétraction de Wy sur Va(y), et soit
fy: Va -> A l'équivalence d'homotopie fy — hy o gy. Comme t(/zy) 0 [Co],
p. 102, on a

T(/y) hy*(% (gy))+ - 1)"+1 y)

(voir [Mi], p. 401). Dans Wh(Cq) on a y y par [Mi], Lemma 6.7 et [Co],
11.5. D'où t (fy)hy.(2y).On en déduit que pour une infinité de y, les
applications fy sont deux-à-deux non-homotopes. Ceci contredit le fait, facilement
visible par la théorie des obstructions, que l'ensemble des classes d'homotopie
d'équivalences d'homotopie de Va dans A est fini.

On peut donc extraire un ensemble dénombrable Q de (S„,a(y)) qui sont
deux-à-deux non-topologiquement conjuguées. Les classes de conjugaison de
représentations linéaires de C" dans R"+l étant en nombre fini, seul un sous-
ensemble fini de £2 peut donc être constitué d'actions topologiquement
conjuguées à une action linéaire.
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(4.3) Remarques.

a) Les actions du théorème (4.2) sont essentiellement celles construites par
Milnor [Mi2]. A l'époque, on ne disposait pas de l'invariance topologique de

la torsion de Whitehead, ce qui empêchait Milnor de déduire qu'elles n'étaient

pas topologiquement conjuguées à une action linéaire.

b) La démonstration de (4.2) se généralise au cas d'actions libres d'un
groupe fini G sur Sn, pourvu que Wh(G) contienne une infinité d'éléments x

tels que x x. C'est, par exemple le cas du groupe du dodécaèdre à 120

éléments (voir [Ha], chapitre 5) qui agit librement sur S4kA.

c) Il est connu que le groupe de chirurgie L2(Cq) est infini si q > 2 [Ba].
On déduit alors de la suite exacte de la chirurgie (et de la théorie du lissage)

pour un espace lenticulaire V6 avec groupe fondamental Cq qu'il existe une
infinité dénombrable de variétés W6 homotopiquement équivalente à V qui
sont deux-à-deux non-topologiquement /z-cobordantes. Leurs revêtements
universels sont des sphères d'homotopie de dimension 6 donc difféomorphes à

S6. Cet argument montre que pour q > 2, il existe une infinité d'actions
libres de Cq sur S6 qui sont deux-à-deux non-topologiquement conjuguées et

dont aucune n'est topologiquement conjuguée à une action QL.

5. Actions libres de S1

Nous commencerons par les actions libres de S1 sur S3.

(5.1) Proposition. Toute action libre de S1 sur S3 est différentiablement
conjuguée à Taction standard.

Démonstration. Une action libre de S1 sur S3 donne un fibré principal

p: S3 -> S{\S3 V (voir le paragraphe 3). On en déduit que V est une surface

qui, par suite exacte du fibré p est simplement connexe. Il s'en suit que V est

difféomorphe à S2. Le fibré p est induit du fibré de Hopf par une application

f: VS2. Comme dans la démonstration du cas a) du théorème (3.1), on
déduit que le degré de /est ±1 et donc/est homotope à un difféomorphisme.
Ce difféomorphisme se relève, au niveau des espaces totaux, en un
difféomorphisme S^équivariant qui conjugue notre action de départ avec l'action
standard.

(5.2) Théorème. Toute action libre QL de S1 sur Sn, avec n ^ 7,

est différentiablement conjuguée à l'action standard.
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Démonstration. Soit (Sn,oC) une telle action. Par le lemme (3.2), on sait

que l'action linéaire associée a' est standard. Par le théorème (3.1), il existe

un /z-cobordisme (W\ Va>, Vf). Comme W est simplement connexe et n ^ 7,

le théorème du /z-cobordisme implique que W est difféomorphe à

Va> x [0,1]. On en déduit, par le cas a) du théorème (3.1) que a et a' sont

différentiablement conjuguées.

(5.3) Remarque. Il existe, en général, une infinité dénombrable d'actions

libre de S1 sur S" qui sont deux-à-deux non-topologiquement conjuguées

(voir [Hs] pour un exemple dans le cas n 11). Ces actions ne sont donc pas

topologiquement conjuguées à une action QL.
La situation pour les actions libres de S1 sur Sn, pour n ^ 7 peut donc se

schématiser de la façon suivante:

actions linéaires =diff actions QL ^Top actions générales.

En revanche, pour les actions libres de S1 sur S5, on va voir que l'on a:

actions linéaires =Top actions QL =Diff actions générales

et que l'égalité actions linéaires — dajf actions QL constitue un problème

ouvert. De manière précise:

(5.4) Théorème, a) Toute action libre de S1 sur S5 est différentiablement

conjuguée à une action QL et topologiquement conjuguée à l'action
standard.

b) L'ensemble des classes de conjugaison différentiable d'actions QL
libres de S1 sur S5 se surjecte sur l'ensemble des classes de difféo-
morphisme de structures différentiables sur CP2. Les préimages de cette

surjection ont au plus 2 éléments.

Remarque. La détermination de l'ensemble des classes de difféomor-
phisme de structures différentiables sur CP2 constitue un problème ouvert.
On ne sait même pas si cet ensemble est fini (le même ensemble, pour certaines

sommes connexes de ±CP2, est infini [FM]). Dans l'état actuel des connaissances

il est bien sûr possible que cet ensemble soit réduit à un seul élément,
auquel cas toute action libre serait différentiablement conjuguée à l'action
standard (voir le corollaire (5.5) ci-dessous).

Démonstration. Soit (S5,a) une action différentiable libre de S1 sur S5.

Le quotient Va Sl\S5 est une variété de dimension 4 et la projection
p: S5 - Va est un S^-fibré principal, induit du fibré de Hopf rj. On a donc un
morphisme de S^fibrés:



66 J.-C. HAUSMANN

S5-+5

[p i 1

Va^CP2

Avec la suite exacte d'homotopie, on vérifie que/est une équivalence d'homo-
topie. Un théorème de C.T.C. Wall [Ki], Theorem 1 p. 59 implique que Va

et CP2 sont /z-cobordante ce qui, par le théorème (3.1), entraîne que a est dif-
férentiablement conjuguée à une action QL (l'action linéaire associée étant

standard). De plus, le théorème du /z-cobordisme topologique de M. Freed-

mann [Fr], théorème 1.3 implique que Va est homéomorphe à CP2. L'action
a est donc topologiquement conjuguée à l'action standard (Théorème (3.1),
cas b). Ceci démontre le point a) et permet de définir l'application du point
b): à une action QL libre a on associe sa variété quotient Va.

Soit Vune variété différentiable homéomorphe à CP2. Par le théorème de

Wall cité ci-dessus, il existe un /z-cobordisme (W3 CP2, F). Le fibré de Hopf
sur CP2 s'étend en un S^fibré principal sur W qui, par restriction à V donne

un S^fibré principal E V. Par le théorème du /z-cobordisme, E est difféo-
morphe à S5. On obtient ainsi une action a libre de S1 sur S5 qui est QL par
le théorème (3.1), avec Va V. Cela démontre que notre correspondance est

surjective. D'autre part, soient a et a' sont deux actions libres dont les

quotients sont difféomorphes à V. Les projections de S5 sur Va et Va- sont

donc équivalentes à deux S^fibrés principaux sur V. Comme dans la démonstration

du théorème 3.1, on vérifie que les premières classes de Chern de ces

fibrés sont des générateurs de H2(V;Z) Z. Cela montre que F a au plus
deux préimages qui seront confondues si et seulement si V possède un difféo-
morphisme sur lui-même induisant la multiplication par -1 sur H2(V;Z).
Cela achève la preuve du point b) et démontre le corollaire suivant:

(5.5) Corollaire. Les deux énoncés suivants sont équivalents:

1) Toute action libre de S1 sur S5 est différentiablement conjuguée à

l'action standard.

2) Toute variété différentiable homéomorphe à CP2 est difféomorphe à

CP2.
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6. Actions libres de S3

Les résultats pour S3 sont similaires à ceux pour S1 (à part la proposition

5.1 qui ne se retrouve que partiellement dans 6.4.a). Les démonstrations

sont identiques, le rôle de CP2 étant tenu par HP1 S4 (et la lre classe de

Chern étant remplacée par la seconde). Les détails sont donc laissés au lecteur.

(6.2) Théorème. Toute action libre QL de S3 sur Sn, avec 11,

est différentiablement conjuguée à l'action standard.

(6.3) Remarque. Il existe, en général, une infinité dénombrable d'actions

libre de S3 sur Sn (n ^ 11) qui sont deux-à-deux non-topologiquement

conjuguées (voir [Hs] pour un exemple dans le cas n 11). Ces actions ne sont

donc pas topologiquement conjuguées à une action QL.

Comme dans le paragraphe précédent, la situation des actions de S3 sur

S7 est très différente:

(6.4) Théorème, a) Toute action libre de S3 sur S1 est différentiablement

conjuguée à une action QL et topologiquement conjuguée à l'action
standard.

b) L'ensemble des classes de conjugaison différentiable d'actions QL
libres de S3 sur S1 se surjecte sur l'ensemble des classes de difféo-
morphisme de structures différentiables sur S4. Les préimages de cette sur-

jection ont au plus 2 éléments.

Remarque. La détermination de l'ensemble des classes de difféo-
morphisme de structures différentiables sur S4 constitue un problème ouvert
et on ne sait même pas s'il est fini. L'hypothèse que cet ensemble est réduit
à un seul élément est connue sous le nom de «conjecture de Poincaré différentiable».

Comme dans la preuve de 5.5, on montre que la préimage d'une variété

Lhoméomorphe à S4 par la surjection de 6.5.b est unique si et seulement si

V possède un difféomorphisme sur elle-même renversant l'orientation (rappelons

que ce n'est en général pas le cas pour des sphères d'homotopie de dimension

supérieure ou pour certaines structures différentiables exotiques sur R4).
Cependant, comme c'est le cas pour V S4, on a:

(6.5) Corollaire. Les deux énoncés suivants sont équivalents:

1) Toute action libre de S3 sur S1 est différentiablement conjuguée à

l'action standard.

2) Toute variété différentiable homéomorphe à S4 est difféomorphe à
S4 (conjecture de Poincaré différentiable en dimension 4).
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7. Exemples d'actions quasi linéaires

Dans ce paragraphe, nous considérerons la «donnée» suivante:

— Mn + l est une variété riemanienne,

— G est un groupe de Lie compact opérant sur M par isométries,

— /: M R est une application différentiable telle que f(gx) f(x) pour
tout x e M et g e G.

— L'application/a un unique point critique p e M, qui est un extremum.
Le point p est donc un point fixe pour l'action de G. On choisit une isométrie
h entre l'espace tangent TPM et Rn + 1 avec son produit scalaire standard.

L'action induite de G sur TPM est donc transportée par h en une action

orthogonale de G sur R" + 1

que nous noterons a,
— Soit q e R une valeur régulière de /. On suppose que la variété

/_1({^}) est difféomorphe à Sn. Remarquons que /_1({q}) est une G-variété.

Pour une telle donnée, nous allons démontrer les trois propositions suivantes:

(7.1) Proposition. L'action de G sur f~\{q}) est QL associée à a.

(7.2) Proposition. Supposons que p est un extremum non dégénéré.

Alors l'action de G sur f~\{q}) est différentiablement conjuguée à a.

Figure 3
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(7.3) Proposition Soit a' une action QL libre de G sur Sn

associée à l'action linéaire a. Alors il existe une donnée comme ci-dessus

pour laquelle l'action de G sur f~l({q}) est différentiablement conjuguée

à a'.

Preuves. Soit U un voisinage de O dans R* + 1 tel que

(p exp o h: U - M fournisse une carte au voisinage de p. On supposera

que p est un minimum et que f(p) 0. Comme p est l'unique point critique
de f, il existe q' tel que 0 < q' < q,f~l{{q'}) C cp(C/) et f~l({q}) admet un

difféomorphisme G-équivariant sur f~l({q'}) (on utilise le flot du champ

grad//||grad/|| (voir [Mi3], Theorem 3.4). Comme (p-1| f~l{{q}) est un

plongement G-équivariant de f~l{{q}) dans (R" + 1,a) cela prouve la

proposition (7.1).

Si maintenant p est un minimum non-dégénéré, le lemme de Morse fournit
une carte \j/ telle que / o \j/ -1 (xu ...,xn +1) « x] + + x2n

+ l. Dans ce

système de coordonnées, les variétés de niveau de / sont des sphères standards

qui intersectent donc chaque rayon de R* + 1 transversalement. On en déduit

que (fo cp) _1 ({#'}) intersecte chaque rayon de R" + 1 transversalement, si q'
est suffisamment petit. On a alors un difféomorphisme équivariant de

(/ ' P) ~1 ({#'}) sur la sphère de rayon 1 par la projection radiale. Cela
démontre (7.2). Pour démontrer (7.3), on va construire la fonction / pour
M Rn + l muni de l'action a. Si a' une action libre QL associée à a, on a,

par le point d) du théorème (3.1), un difféomorphisme G-équivariant
g: (Sn x R, a) (Sn xR,aj (actions produits). Posons g(x, t) (g\(x, t),
g2(x,t)). Soit

w(x, t)

On a donc un difféomorphisme G-équivariant de

(R" + i - {0}, a) (S" x ]0, oo [, a)

sur (S" x ]0, oo[, a') pour les actions produits donné par

(x,t)^ (g, (x, t), w(x, t))

On définit /: R" + 1 -> R par:

f(x,t)e~l/v(x,t)2et/(O) 0

Comme le difféomorphisme g est en quelque sorte «périodique» (voir sa
construction dans la preuve de (3.1)), on a que toutes les dérivées partielles, de tout
ordre, de g sont bornées et de plus t-2^ g2(x, ^ + 2. On en déduit que
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toutes les dérivées partielles de w(x, t) sont bornées. Il s'en suit que / est de

classe C00 avec toutes les dérivées partielles s'annulant en 0. On vérifie
aisément que / a les propriétés voulues, ce qui démontre (7.3).
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