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46 G. J. JANUSZ

COROLLARY 2 (C. Jordan [3]). A primitive subgroup of Sym(n)
containing a transposition is all of Sym(n).

Proof. Let 2% be a primitive subgroup of Sym(n) and T a transposition
in 7. Then 27 permutes the components I'; of I'(27, 1) and so the vertex
sets V; of the I'; are permuted by 27°. The primitivity of 77 implies that the
set {1, 2, - -+, n} can be partitioned into disjoint subsets permuted by 27 only
if each subset has order one or there is just one subset of order n. Since the
vertex set of I'; has more than one element, there is only one component and
7¢’= Sym(n) by Corollary 1.

2. AN APPLICATION TO GALOIS THEORY

We extend the theorem mentioned in the introduction replacing the
condition that the degree of the polynomial be a prime greater than 3 by the
 condition that the degree of the polynomial be divisible only by primes greater
than 3.

THEOREM 2. Left f(x) be a polynomial of degree n with rational
coefficients and irreducible over the rational field. Assume that f(x) has
exactly n — 2 real roots. If n is divisible only by primes greater than 3
then the Galois group of the splitting field of f(x) is not solvable and
f(x) is not solvable by radicals.

Proof. Let 2% be the Galois group of f(x) over the rational field. We
view Z7° as a permutation group on the n roots of f. Then complex conjuga-
tion, 1, is a transposition in 27 of the two nonreal roots. Since f(x) is
irreducible, 27 is transitive on the set of n roots. By theorem 1, 27 contains
a subgroup isomorphic to the direct product of 7 copies of Sym (k) where
tk = n. Since k is a divisor of n and k > 1, the hypothesis on the divisors of
n implies k£ > 5. Thus Sym (k) is not a solvable group and 7#”is not solvable
as it contains a nonsolvable subgroup. Thus f(x) is not solvable by radicals.

3. TWO GENERATOR SUBGROUPS OF Sym (n)

Next we apply Theorem 1 to determine the subgroup of Sym () generated
by a transposition and one other element. We first consider the case in which




PERMUTATION GROUPS 47

the other element is an n-cycle. Let 6 = (1,2, -++,n) and t = (a, b) with
1 <a<b< nandlet G = (o, 1) be the group generated by the two elements.
Then G is transitive on {1,2, ---, n} because the cyclic subgroup (o) is
transitive. Theorem 1 will be applied to prove the following result.

THEOREM 3. Let o be an n-cycle and t = (a, b) a transposition in
Sym(n) and G the subgroup of Sym(n) generated by o and t. Let
g be a positive integer such that ¢%(a) = b andlet t = ged(n, q). Then t
is the least positive integer such that t and o'tc~! correspond to edges
in the same connected component of the graph T (G, t) defined above. If
we write n =tk for some integer k then G contains a normal
subgroup S isomorphic to the direct product of t copies of Sym(k). The
quotient G/S is cyclic of order t. In particular G is a solvable group if
and only if k < 4.

Proof. Let S be the subgroup of G generated by all the transpositions
conjugate in G to 1. By Theorem 1, Sis the direct product of 7 copies of Sym (k)
where ¢ is the number of components of the graph I'(G, 1). Let I'y, - -+, T’, be
the components of I'(G, 1). Since o is an n-cycle, the cyclic group (o)
permutes the components transitively. It follows that o’ fixes each I'; and so
o’ € S and no smaller positive power of ¢ fixes any one of the I';. Thus 7 is
the least positive integer such that the edges corresponding to T and c’toc ~¢
lie in the same component of I' (G, 1). The fact that G/S is cyclic follows from
the fact that G is generated by ¢ and 7 and 7 is in S. Thus G/S is generated
by the coset 6S.

The group G is solvable if and only if S and G/S are solvable; G/S is cyclic,
hence solvable. S is solvable if and only if Sym (k) is solvable. It is well known
that Sym (k) is solvable if and only if k£ < 4.

We must now show that 7 is obtained as stated. We make a change of
notation to facilitate the proof. Let R denote the ring Z/(n) of integers modulo
n and view Sym (n) as a group of permutations of R. By renaming the elements,
we may assume that o is the n-cycle defined by 6(x) = x + 1 (with the addition
in R used, of course). Let t = (a, b) with @, b € R and take ¢ = b — a. Since
c?(a) = a + q = b, any other integer power of ¢ that carries a to b will have
exponent congruent modulo n to b — a so there is no harm in assuming
q=>b-a.

Let G = (o, 1); we will show that the connected components of the graph
I'(G, 1) have the cosets x + gR as the vertex sets. The case in which gR has
only two elements is somewhat exceptional and easy so we treat it first. When
gR has two elements then n is even and ¢ = n/2 (mod n) and



48 G.J. JANUSZ

a+qR=a+ (b —a)R = {a, b}.

Thus 1 fixes every coset x + gR and o carries x + gR to x + 1 + gR. Thus
the edges of I'(G, 7) are the pairs in the distinct cosets and each connected com-
ponent consists of two vertices and one edge. There are n/2 components and
so the number ¢ of Theorem 3 is # = n/2 which equals ged(n, q) as required.

Let r be the number of elements in gR and now assume r > 2. Thus
r = n/ged(n,q) and rg = 0in R. The elements in a coset # + gR have the form
u + jq, with 1 < j < r. The cosets are permuted transitively by (o). Each
coset is left invariant by 7. This is clear for cosets not containing @ or b. Since
a+ q = b, both aand b liein @ + gR so T also leaves @ + gR invariant. The
edges of I are generated by applying the elements of G to the edge {a, b}. Thus
the endpoints of an edge of I lie in the same coset of gR. Hence a connected
component has all its vertices in one coset and thus a component has at most
r vertices. Now we show that all vertices in a coset are connected. It is sufficient
to show this for the coset a + gR since G is transitive on the components. The
following computation is crucial for this verification:

(2) (t69)/{a,b} ={a,b + jq} for 1<j<r—-2.
We verify this by induction on j. For j = 1 we have
t69{a,b} =1t{a +q,b+ q}=1{b,b+ q}.

If wehad b + g = a,then0 = b — a + g = 2g and it follows that gR has only
two elements. In the present case we have r>2 so b+ g #a and
(b + q) = b + q. Since 1(b) = a we see that (2) holds for j = 1. Now assume
(2) holds for j and that j + 1 < r — 2. Then

(to?)V+{a, b} = 16%a, b + jq}
=t{a+q,b+ (+ g}
=1{b,b + (j + g}

Ifb+ (j + 1)g = athen (j + 2)g = 0. This implies j + 2 > r contrary to the
choices of j. Thus ©(b + (j + 1)q) = b + (j + 1)g and t(b) = a; thus (2)
holds.

This computation shows that there are r — 2 edges connecting a to verticies
b + jg. The edge {a, b} is not counted among these. Thus we account for
r — 1 edges containing a and r vertices in the connected component containing
a. We have already seen that the components contain no more than r vertices.
Hence there are exactly r = n/ged(n, q) vertices in a component and the
" number of components is n/r = ged(n, q) as we wanted to prove.
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The group {6, T) equals Sym(n) precisely when the graph I has just one
component, that is # = 1 in Theorem 3. We have the following easily applied
criterion.

COROLLARY 4. Let o be an n-cycle and T = (a, b) a transposition in
Sym(n). Let q be an integer such that c7(a) = b. Then the group
generated by o and vt is all of Sym(n) if and only if gcd(n, q) = 1.

We give two examples that determine the two generator groups using
Theorem 3.

Example 1. Leto =(1,2,3,4,5,6,7,8) and v = (1, 5). The description
of I = I'((5, 1), 1) may be obtained using Theorem 3. Since 6*(1) = 5 we
find there are ¢ = ged(8, 4) = 4 components with 2 vertices in each.

In order to determine the group G = (o, 1) explicitly, we find the
component of I'. We find the edges of T' by repeatedly applying ¢ to the edge
{1, 5} to obtain the edges

{2,6},{3,7},{4,8},{1,5}.

Application of t does not yield any new edges and so these are all the edges
in I'. The groups of permutations of the components are:

S1:<(296)>’ 82=<(337)>3 SSZ<(4:8)>9 S4:<(195)>-

The conjugation action of o is to cyclically permute the factors S, S,, S;, S4
and o4 = (1,5(2,6)(3,7)(4,8) isin S, X --+ X S;. Thus the order of G is

1S [*[<oy/Coty|=244=64.
Example 2. Leto =(1,2,3,4,5,6,7,8) and 1t = (1, 6). Since 6° (1) = 6
and gcd (8, 5) = 1, Corollary 4 implies (o, t) = Sym(8).

Now we consider the description of (6, t) with t a transposition and o
any element of Sym(n), not necessarily an n-cycle. The discussion will be
broken into cases depending on how ¢ and 1 are realted.

To make the notation simpler, let us assume T = (1, 2). We may express ¢
as a product of disjoint cycles

c=C&¢& &, &j a cycle .

Let V; be the set of symbols moved by &; so that &; permutes the elements of
V; transitively and fixes the elements of V; for j # i.

The first case in which ¢ is a cycle and 71 is a transposition moving two
symbols that are also moved by ¢ is covered in Theorem 3.
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Second case. 1,2 € V,. This is the case in which the two elements
moved by T are moved by a single cycle appearing in the decomposition of ©.

Since o(V;) = V; and 1t(V;) = V;, we obtain a homomorphism p of
G = (o, ) into Sym(V;) defined by letting p(n) be the restriction to V; of
n € G. Thus p(c) = &; and p(t) = 7. The group p(G) = (&, 1) is determined
by Theorem 3 since &, is a cycle on V; and 7 is a transposition. The kernel
of p is the set of elements in G that leave fixed each element of V.

We will describe the kernel of p precisely but first we examine a potentially
larger group containing G.

Let vy = £, 'o so that

c=8& & =&y =1v&.

Of course &; need not be in G so y need not be in G. Let ¥ be the group
generated by o, T, and y. Then we also have ¥ = (&;,1,v). The subgroup
(&, T) of & operates on V, while fixing each point in its complement and
(vy) operates on the complement of ¥V, while fixing each point of V;. It
follows that the group ¥ is the direct product

T = LTy XYy, (%)

The subgroup of ¢ fixing V; is {7y ) and so the kernel of p:G — (&, 1) is
the cyclic group G n (vy).

The subgroup S of (§&;, T) generated by all the conjugates of t is actually
a subgroup of G. To see this we note that any element n of G can be expressed
as '
n = pMm)y’ for some integer i.

Thus
nm - = pmyty p(m) = pm)tpMm) .

Since p maps G onto ¢ &;, T) it follows that every conjugate of T in (§&;, 1)
is also conjugate of T in G and conversely. The subgroup generated by all these
conjugates, denoted as S in Theorem 3, is contained in G and in the first factor
of ¢ in (*).

We will factor out the normal subgroup S from both Gand ¢ . Sincet € S
it follows that

= (&) x (Y)Y,

= (o) = (&),

vl wlw|
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where 7 is the coset nS. This factor will be used in two ways: We will
determine the index of S in G and thereby determine the order of G and we
will also determine the smallest power of y that lies in G thereby finding the
kernel of p.

We are dealing with a two-generator abelian group /S and the subgroup
G/S generated by the product of the two generators. The first generator &,
has order ¢, the number of connected components of the graph I'(§;, 7). Let
g denote the order of y. Note that g is also the order of y because
S N (y) = e. Then the order of ¢ = &y is the least common multiple of ¢
and g, denoted as [t, g]. Thus the order of G is the order of S times [7, g].
The order of (&;, 1) is the order of S times ¢ (as we known from Theorem 3)
and p maps G onto this group. Hence the kernel of p has order

_Isling _[tel _ ¢
| S|t t (e

| ker p|

where (¢, g) is the greatest common divisor of ¢ and g. Since the order of vy’
is g/(t,g) it follows that vy’ generates the kernel of p; we have
G n (y)=<(yH.

We summarize this case in a theorem.

THEOREM 5. Suppose o = &.&, -+ - &, is the cycle decomposition of o
and v = (a, b) is a transposition with both a and b moved by the cycle
&, appearingin o. Let G={c,t). Let y==E& 'c andlet n be the
order of ¢&,,g the order of y and 't the number of connected
components of the graph T (K&,t),T) and k = n/t. Then the sub-
group S of G generated by all the G-conjugates of T is isomorphic to
the direct product of t copies of Sym (k). The quotient group G/S is
cyclic with order [t, gl, the least common multiple of t and g. The order
of G is (k")'[t,gl. The homomorphism p:G — (&,1) defined by
restricting the action of G to the set of symbols moved by &, has kernel
yh).

Example 3. This example illustrates the ideas used in the proof of
Theorem 5. Let 6 =(1,2,3,4,5,6)(7,8,9) and 7 =(1,3). Then
& =(1,2,3,4,5,6) and vy = (7, 8, 9) in the notation of Theorem 5. We first
describe the group <(&,Tt) wusing Theorem 3 and the graph
I'=T((&,7),1). The lowest power of &, that has the same effect as T on
1is £7. Thus the number of components of T is ¢ = ged(6, 2) = 2. Thus the
components of I' have vertex sets {1, 3, 5} and {2, 4, 6} as we find by applying
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- powers of &; to {1, 3}. Thus the subgroup generated by the G-conjugates of
ris S =8, X S, with each S; = Sym(3).

The group G = (o, 1) admits a homomorphism p onto < §,, ) defined
by restriction of elements of G to the action induced on {1, 2, 3,4, 5, 6}, the
set moved by &;. The kernel of p is the subgroup of G fixing the symbols 1,
2, 3,4, 5, 6. The kernel was shown to be G n {y) = {(y’). Since t = 2 and
vy = (7, 8,9) has order 3, it follows that the kernel of p is the group (y) of
order 3. The group G must also contains &, = ¥ ~!c and so we have the
decomposition

G=<(o,7)=1((1,2,3,4,5,6)(7,8,9),(1, 3)>
= <E)1’T> X <’Y> = <(1’293’4,576)9(173)> X <(7’8’9)>‘

The order of G is (3!)-2-3 = 63.

If this example is changed by letting o = (1, 2, 3, 4, 5, 6)(7, 8), so that
v = (7, 8), but keeping the same 1 then ¢ is unchanged and so the kernel of
pis (y2) =e. Thus p: G — (&, 1) is an isomorphism. The order of G is
- (3N2- 2.

The two cases covered by Theorems 3 and 5 take care of the difficult cases.
All the remaining cases can be handled quickly.

Third Case. © = (1,2) and 6(1) =1 and o (2) = 2; i.e. ¢ fixes the two
symbols moved by 1. Then

G=(0,T1)=(0) X(1)
is the direct product of two cyclic groups.

Fourth Case. ©=(1,2) and 6 = (1,4, -, a,) 2, b, -+, bs)y where
r>=1,s 2 1; i.e. c moves at least one of the symbols moved by t and if it
moves both, they do not appear in the same cycle of 6. If r = 1 then (1) = 1;
similarly for s = 1. If r = s = 1 then we are in the third case so we may assume
~either r or s is greater than 1. It is assumed that this is the cycle decomposition
of ¢ and that v is the product of the disjoint cycles not moving 1 or 2. Then
- we let o; be the element

op=01t=(,a," ,a)2,b, -, b5)y(1,2)
= (lst’ '."bsazsaZ’ '.'sar)y .
 Since the group generated by o and 7t is the same as the group generated by

o, and 1, we may replace 6 by 6,. We are back in the first case now because
~both 1 and 2 are moved by the same cycle appearing in the generator o;.
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We may collect the results as follows.

SUMMARY. Let G = (o, 1) with o6, T € Sym(n) and T a transposition.
If o is an n-cycle, the G is described in Theorem 3.

If ¢ is a product of disjoint cycles, one of which moves both the symbols
moved by 1, then G is described in Theorem 5.

If o fixes both symbols moved by T then G = (o) X (1) is an abelian
group.

If 6 moves one, but not both of, the symbols moved by 1 or if 6 moves
both symbols moved by 1 but not in the same cycle then ¢ may be replaced
by 6, = 76 and then G = (o,,t) and G is described as in case 1 or 2.
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