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PERMUTATION GROUPS GENERATED BY A TRANSPOSITION
AND ANOTHER ELEMENT

by Gerald J. JANUSZ

ABSTRACT: The subgroup of the symmetric group Sym(n) generated by a
transposition and another element is described explicitly using data easily
obtained from the two elements. The proofs use a graph that is defined for
any subgroup of Sym(n) that contains a transposition. Application is made
to prove that a rational, irreducible polynomial of degree » having exactly
n — 2 real roots is not solvable by radicals provided that » is not divisible by
2 or 3.

In the begining study of the symmetric group Sym (Q) of all permutations
on a set Q the student learns the standard fact that every permutation can be
expressed as a product of transpositions; otherwise put, Sym (<) is generated
by its transpositions. In some expositions, other generating sets are mentioned.
For example for a prime p, it is not difficult to show that the symmetric group
Sym(p) on p symbols is generated by a p-cycle and a transposition. In fact
any p-cycle and any transposition will generate Sym (p).

A well-known theorem of Galois theory folklore (see [1, Theorem 4.16])
uses this information about the generation of the symmetric group to prove
the existence of polynomials not solvable by radicals. In this theorem one
considers a polynomial f (x) of prime degree p > 5 having rational coefficients.
Assume that f (x) is irreducible over the rational numbers and has exactly p — 2
real roots. Then the Galois group of the splitting field of f(x) over the rational
field is not solvable. In fact the Galois group is isomorphic to the symmetric
group on p symbols. In particular the polynomial is not solvable by radicals.
Here is a sketch of the proof. When the Galois group is regarded as a permuta-
tion group on the p roots of f(x), the hypothesis implies that the Galois group
contains a p-cycle and a transposition and hence it must be the full symmetric
group on the p roots.

This proof breaks down for nonprime degree. If # is not prime, an n-cycle
may be paired with a transposition in Sym (n) to generate a subgroup smaller
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42 G. J. JANUSZ

than Sym (n) (see Corollary 5). The simplest example is the group of order 8
generated by (1, 2, 3,4) and (1, 3) having index 3 in Sym (4).

The object of this note is to show how the subgroup of Sym (n) generated
by a transposition and one other element can be determined. In particular we
will define a graph associated with a cycle o and a transposition t. (In fact
the graph will be defined for a somewhat more general situation.) An easily
computable condition on ¢ and t (or on the graph) will determine if the group
generated by ¢ and 7 is the full symmetric group. To show that a wide variety
of groups can be generated by a transposition and a cycle, we mention three
cases. Let 6 =(1,2,3,4,5,6,7,8) and © one of the 28 transpositions in
Sym (8). Then the subgroup of Sym (8) generated by ¢ and 7 is all of Sym (8),
a group of order 40320, for 16 choices of t; is a group of order 1152 for
8 choices of T and a group of order 64 for 4 choices of t.

Once the case of an n-cycle and a transposition has been done, it is fairly
straight forward to do the general case. We determine the group generated by
a transposition and any other element. As an application of these ideas we
show that the theorem on Galois groups mentioned above remains valid for
polynomials of degree n not divisible by 2 or 3.

1. A GRAPH FOR A SUBGROUP CONTAINING A TRANSPOSITION

We consider a subgroup &7 of Sym(n) that contains a transposition
1 = (a, b). We will define a graph depending on 7 and t and use it to prove
the existence of a normal subgroup of 27 whose structure can be described

explicitly.

Let I' = I'(27, t) be the graph whose vertex set is V' ={1,2, ---,n} on
which 27 acts as permutations. An edge of I' is a two element subset {i, j}
of vertices such that the transposition (i, j) is conjugate to t in 2#°. Thus {i, j}
is an edge of T if and only if there is some element n € 22 such that

nm ' =(@GJ).
For any transposition (r, s) we have
(1) n@, s)yn-' = @), n(s)

so it follows that {i, j} is an edge of I if and only if {i, j} = {n(a), n(b)} for
some 1 € 2. The action of 27 on the vertices of I permutes the edges and
- so &7 is part of the automorphism group of I'. The notion of a path and
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connected vertices will be used to examine the structure of 2#°. We remind the
reader of the relevant concepts associated with the graph.

A path in T is a sequence of edges such that adjacent terms of the sequence
have a vertex in common. Two vertices u# and v are connected if there is a path
in I with » and v vertices of some edges in the path. A component of T is
a maximal subgraph in which any two vertices are connected by a path. It is
easy to see that connectedness is an equivalence relation on the set of vertices
and so the vertex set V is partitioned into disjoint subsets Vi, - - -, V; maxi-
mal with the property that two vertices in a subset are connected. Then I is
a disjoint union

r=r,vl,u---ul,, tt>1,

with each I'; a component of I.

We now show that each component is a complete graph on its vertices; i.e.
every pair of vertices of I'; lie on an edge. Let i and j be two vertices
connected by a path in I'. Then there are transpositions

T=0a), w=@,a), ", T=@_1,a), ", T=(@_1,))

in 77 and each is conjugate to T. Then each of the following transpositions
is in 2#° and is also conjugate to t:

T2T1T2 = (I, )
T3(i, a2)T3 = (l, ag) 5

T4(l, a3) T4 = (I, aq) ,

........

Tl a1t = (1, ) .

Thus (7, j) € 27 and there is an edge of I" connecting / and J. In other words
this argument shows that 2#° contains every transposition of Sym (n) that

exchanges a pair of connected vertices. This gives the information needed in
the following statement:

THEOREM 1. Let 27 be a subgroup of the symmetric group Sym(n);
assume 27 contains a transposition 1. Let the components of the graph
U'(77,t) be Ty, --,T; andlet V, denote the set of vertices of T;. Let
S be the subgroup of 3 generated by all the conjugates of t© in 2.
Then S isanormal subgroup of 2 and is isomorphic to the direct product
Sp X ==+ X S, where S; is the symmetric group of all permutations of V,.
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Assume 77 s transitive on {1,2,---,n}. Then the groups S, -+, S,
are isomorphic and S is isomorphic to Sym(k), the direct product of
t copies of Sym(k) where tk=n and k > 1. The elements of 7
permute the components 1y, .-+, and only the elements of S leave all
the 1 fixed (as sets). Thus 2778 is isomorphic to a transitive subgroup of
Sym (7).

Proof. The statement that S is a normal subgroup of 77 follows at once
because the set of generators of S is closed under conjugation by elements of
7. The conjugate class of T consists of transpositions corresponding one-to-
one with the edges of I'. Let S; be the subgroup generated by the transposi-
tions corresponding to edges of I';. Since we have seen that I'; has an edge
joining every pair of vertices, S; contains every transposition permuting two
elements of V;. Thus §; is the full symmetric group Sym (¥;) of permutations
of V. Since the S; permute disjoint sets of vertices, the group S is the direct
product of the groups S;, -, S,

Now suppose that 77 is transitive on V. For any pair of indices i and J
- and verticies 4 € I'; and v € T, there is an element n € 77 with n(u) = v. It
follows that n(I') =T, n(V) =V, and nSn~! = §;. So any two of the
groups S;, -+, S, are conjugate, hence isomorphic. If k£ is the number of
vertices of I'; (for any /) then

S=8 X+ x 8§ =Sym(k) X -+ X Sym(k) = Sym(k)® .

Because £ is the number of vertices in each I';, and since I'; contains at least
one edge, I'; must contain at least two vertices. Thus k > 2.

We have already seen that 2#° permutes the set {I';, ---, I';} of compo-
nents; the elements in S leave each I'; fixed because S; is generated by trans-
positions which leave every I; fixed. We will now prove that the only
elements of 27 that leave every I; fixed are the elements of S. Suppose
ne 7 and n(I') =T, for 1 < i<t Then nSn-! = S§;; conjugation by n
induces an automorphism of S;. A great deal is known about the auto-
morphisms of symmetric groups. An automorphism of Sym (k) is a conjugation
by an element of Sym (k) except possibly when k = 6 (see [4, Theorem 7.4,
page 133]). An automorphism of Sym (6) is either a conjugation by an element
of Sym(6) or it has the property that every transposition is mapped to the
product of three transpositions (see [2]). In the present case, the automorphism
A — nAn~! must send transpositions to transpositions. Hence there is an
element y; € S; such that nAn ! = ﬂ/,»”?w,- for all A € S;. The elements of
different S; commute with each other so it follows that
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Yoo yman Ty v) T = A

for every A € S; and for every i. The element o = vy, -+ ym commutes with
every element of S; in particular & commutes with every transposition in S.
In view of Equation (1), an element centralizing each transposition must leave
every edge of I' fixed. There are only two possibilities for an automorphism
of T that fixes all edges. If there is a path in I" with two or more edges, then
every edge lies on a path with two or more edges (because the components are
complete graphs and two components are isomorphic). In this case the only
automorphism fixing every edge is the identity on the vertices. Thus in this
case ;- ym=eand n € S.

In the remaining case there are no paths of length two in I' and so every
S; is of order 2. The element a leaves every edge fixed and so either fixes or
permutes the two vertices of I';. If S; = {(i, v)) and if o moves u then o must
interchange u and v because edges are preserved. It follows that (u, v)a fixes
u and v. By repeating this argument for each component of I' we get a
multiplied by certain transpositions in S leaves all vertices fixed and hence is
the identity. It follows that n is the product of the transpositions in certain
of the §;. Thus in this case we also have n € S and the only elements
of 27 fixing the sets V; are the elements of S. Thus the group of permuta-
tions of the I'; induced by the action of 27 is the group 2#7S. So 7S is
isomorphic to a subgroup of Sym(f). Note that if 27 acts transitively on
{1,2, ---,n}, then 2#7S acts transitively on {I'y, -+, T,}.

The graph I' (77, t) can be used to give an easy criterion to determine when
"= Sym(n).

COROLLARY 1. The subgroup of Sym(n) generated by a subgroup
¢ containing a transposition t is all of Sym(n) if and only if the graph
I'(77, 1) is connected.

Proof. If I'(27, 1) is connected then 27 contains every transposition
(4, j) because the graph is a complete graph containing every possible edge,
as shown earlier. Since every permutation in Sym (#) is a product of transposi-
tions, and all the transpositions are in 27, it follows that 2= Sym (n).
Conversely if 2#°= Sym(n), then every transposition in 57 is conjugate to 1

and the graph I'(27, T) contains every possible edge; in particular the graph
i1s connected.

The graph I' provides a tool that enables us to give a quick proof of a
special case of a theorem first proved by C. Jordan.
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COROLLARY 2 (C. Jordan [3]). A primitive subgroup of Sym(n)
containing a transposition is all of Sym(n).

Proof. Let 2% be a primitive subgroup of Sym(n) and T a transposition
in 7. Then 27 permutes the components I'; of I'(27, 1) and so the vertex
sets V; of the I'; are permuted by 27°. The primitivity of 77 implies that the
set {1, 2, - -+, n} can be partitioned into disjoint subsets permuted by 27 only
if each subset has order one or there is just one subset of order n. Since the
vertex set of I'; has more than one element, there is only one component and
7¢’= Sym(n) by Corollary 1.

2. AN APPLICATION TO GALOIS THEORY

We extend the theorem mentioned in the introduction replacing the
condition that the degree of the polynomial be a prime greater than 3 by the
 condition that the degree of the polynomial be divisible only by primes greater
than 3.

THEOREM 2. Left f(x) be a polynomial of degree n with rational
coefficients and irreducible over the rational field. Assume that f(x) has
exactly n — 2 real roots. If n is divisible only by primes greater than 3
then the Galois group of the splitting field of f(x) is not solvable and
f(x) is not solvable by radicals.

Proof. Let 2% be the Galois group of f(x) over the rational field. We
view Z7° as a permutation group on the n roots of f. Then complex conjuga-
tion, 1, is a transposition in 27 of the two nonreal roots. Since f(x) is
irreducible, 27 is transitive on the set of n roots. By theorem 1, 27 contains
a subgroup isomorphic to the direct product of 7 copies of Sym (k) where
tk = n. Since k is a divisor of n and k > 1, the hypothesis on the divisors of
n implies k£ > 5. Thus Sym (k) is not a solvable group and 7#”is not solvable
as it contains a nonsolvable subgroup. Thus f(x) is not solvable by radicals.

3. TWO GENERATOR SUBGROUPS OF Sym (n)

Next we apply Theorem 1 to determine the subgroup of Sym () generated
by a transposition and one other element. We first consider the case in which
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the other element is an n-cycle. Let 6 = (1,2, -++,n) and t = (a, b) with
1 <a<b< nandlet G = (o, 1) be the group generated by the two elements.
Then G is transitive on {1,2, ---, n} because the cyclic subgroup (o) is
transitive. Theorem 1 will be applied to prove the following result.

THEOREM 3. Let o be an n-cycle and t = (a, b) a transposition in
Sym(n) and G the subgroup of Sym(n) generated by o and t. Let
g be a positive integer such that ¢%(a) = b andlet t = ged(n, q). Then t
is the least positive integer such that t and o'tc~! correspond to edges
in the same connected component of the graph T (G, t) defined above. If
we write n =tk for some integer k then G contains a normal
subgroup S isomorphic to the direct product of t copies of Sym(k). The
quotient G/S is cyclic of order t. In particular G is a solvable group if
and only if k < 4.

Proof. Let S be the subgroup of G generated by all the transpositions
conjugate in G to 1. By Theorem 1, Sis the direct product of 7 copies of Sym (k)
where ¢ is the number of components of the graph I'(G, 1). Let I'y, - -+, T’, be
the components of I'(G, 1). Since o is an n-cycle, the cyclic group (o)
permutes the components transitively. It follows that o’ fixes each I'; and so
o’ € S and no smaller positive power of ¢ fixes any one of the I';. Thus 7 is
the least positive integer such that the edges corresponding to T and c’toc ~¢
lie in the same component of I' (G, 1). The fact that G/S is cyclic follows from
the fact that G is generated by ¢ and 7 and 7 is in S. Thus G/S is generated
by the coset 6S.

The group G is solvable if and only if S and G/S are solvable; G/S is cyclic,
hence solvable. S is solvable if and only if Sym (k) is solvable. It is well known
that Sym (k) is solvable if and only if k£ < 4.

We must now show that 7 is obtained as stated. We make a change of
notation to facilitate the proof. Let R denote the ring Z/(n) of integers modulo
n and view Sym (n) as a group of permutations of R. By renaming the elements,
we may assume that o is the n-cycle defined by 6(x) = x + 1 (with the addition
in R used, of course). Let t = (a, b) with @, b € R and take ¢ = b — a. Since
c?(a) = a + q = b, any other integer power of ¢ that carries a to b will have
exponent congruent modulo n to b — a so there is no harm in assuming
q=>b-a.

Let G = (o, 1); we will show that the connected components of the graph
I'(G, 1) have the cosets x + gR as the vertex sets. The case in which gR has
only two elements is somewhat exceptional and easy so we treat it first. When
gR has two elements then n is even and ¢ = n/2 (mod n) and
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a+qR=a+ (b —a)R = {a, b}.

Thus 1 fixes every coset x + gR and o carries x + gR to x + 1 + gR. Thus
the edges of I'(G, 7) are the pairs in the distinct cosets and each connected com-
ponent consists of two vertices and one edge. There are n/2 components and
so the number ¢ of Theorem 3 is # = n/2 which equals ged(n, q) as required.

Let r be the number of elements in gR and now assume r > 2. Thus
r = n/ged(n,q) and rg = 0in R. The elements in a coset # + gR have the form
u + jq, with 1 < j < r. The cosets are permuted transitively by (o). Each
coset is left invariant by 7. This is clear for cosets not containing @ or b. Since
a+ q = b, both aand b liein @ + gR so T also leaves @ + gR invariant. The
edges of I are generated by applying the elements of G to the edge {a, b}. Thus
the endpoints of an edge of I lie in the same coset of gR. Hence a connected
component has all its vertices in one coset and thus a component has at most
r vertices. Now we show that all vertices in a coset are connected. It is sufficient
to show this for the coset a + gR since G is transitive on the components. The
following computation is crucial for this verification:

(2) (t69)/{a,b} ={a,b + jq} for 1<j<r—-2.
We verify this by induction on j. For j = 1 we have
t69{a,b} =1t{a +q,b+ q}=1{b,b+ q}.

If wehad b + g = a,then0 = b — a + g = 2g and it follows that gR has only
two elements. In the present case we have r>2 so b+ g #a and
(b + q) = b + q. Since 1(b) = a we see that (2) holds for j = 1. Now assume
(2) holds for j and that j + 1 < r — 2. Then

(to?)V+{a, b} = 16%a, b + jq}
=t{a+q,b+ (+ g}
=1{b,b + (j + g}

Ifb+ (j + 1)g = athen (j + 2)g = 0. This implies j + 2 > r contrary to the
choices of j. Thus ©(b + (j + 1)q) = b + (j + 1)g and t(b) = a; thus (2)
holds.

This computation shows that there are r — 2 edges connecting a to verticies
b + jg. The edge {a, b} is not counted among these. Thus we account for
r — 1 edges containing a and r vertices in the connected component containing
a. We have already seen that the components contain no more than r vertices.
Hence there are exactly r = n/ged(n, q) vertices in a component and the
" number of components is n/r = ged(n, q) as we wanted to prove.
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The group {6, T) equals Sym(n) precisely when the graph I has just one
component, that is # = 1 in Theorem 3. We have the following easily applied
criterion.

COROLLARY 4. Let o be an n-cycle and T = (a, b) a transposition in
Sym(n). Let q be an integer such that c7(a) = b. Then the group
generated by o and vt is all of Sym(n) if and only if gcd(n, q) = 1.

We give two examples that determine the two generator groups using
Theorem 3.

Example 1. Leto =(1,2,3,4,5,6,7,8) and v = (1, 5). The description
of I = I'((5, 1), 1) may be obtained using Theorem 3. Since 6*(1) = 5 we
find there are ¢ = ged(8, 4) = 4 components with 2 vertices in each.

In order to determine the group G = (o, 1) explicitly, we find the
component of I'. We find the edges of T' by repeatedly applying ¢ to the edge
{1, 5} to obtain the edges

{2,6},{3,7},{4,8},{1,5}.

Application of t does not yield any new edges and so these are all the edges
in I'. The groups of permutations of the components are:

S1:<(296)>’ 82=<(337)>3 SSZ<(4:8)>9 S4:<(195)>-

The conjugation action of o is to cyclically permute the factors S, S,, S;, S4
and o4 = (1,5(2,6)(3,7)(4,8) isin S, X --+ X S;. Thus the order of G is

1S [*[<oy/Coty|=244=64.
Example 2. Leto =(1,2,3,4,5,6,7,8) and 1t = (1, 6). Since 6° (1) = 6
and gcd (8, 5) = 1, Corollary 4 implies (o, t) = Sym(8).

Now we consider the description of (6, t) with t a transposition and o
any element of Sym(n), not necessarily an n-cycle. The discussion will be
broken into cases depending on how ¢ and 1 are realted.

To make the notation simpler, let us assume T = (1, 2). We may express ¢
as a product of disjoint cycles

c=C&¢& &, &j a cycle .

Let V; be the set of symbols moved by &; so that &; permutes the elements of
V; transitively and fixes the elements of V; for j # i.

The first case in which ¢ is a cycle and 71 is a transposition moving two
symbols that are also moved by ¢ is covered in Theorem 3.
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Second case. 1,2 € V,. This is the case in which the two elements
moved by T are moved by a single cycle appearing in the decomposition of ©.

Since o(V;) = V; and 1t(V;) = V;, we obtain a homomorphism p of
G = (o, ) into Sym(V;) defined by letting p(n) be the restriction to V; of
n € G. Thus p(c) = &; and p(t) = 7. The group p(G) = (&, 1) is determined
by Theorem 3 since &, is a cycle on V; and 7 is a transposition. The kernel
of p is the set of elements in G that leave fixed each element of V.

We will describe the kernel of p precisely but first we examine a potentially
larger group containing G.

Let vy = £, 'o so that

c=8& & =&y =1v&.

Of course &; need not be in G so y need not be in G. Let ¥ be the group
generated by o, T, and y. Then we also have ¥ = (&;,1,v). The subgroup
(&, T) of & operates on V, while fixing each point in its complement and
(vy) operates on the complement of ¥V, while fixing each point of V;. It
follows that the group ¥ is the direct product

T = LTy XYy, (%)

The subgroup of ¢ fixing V; is {7y ) and so the kernel of p:G — (&, 1) is
the cyclic group G n (vy).

The subgroup S of (§&;, T) generated by all the conjugates of t is actually
a subgroup of G. To see this we note that any element n of G can be expressed
as '
n = pMm)y’ for some integer i.

Thus
nm - = pmyty p(m) = pm)tpMm) .

Since p maps G onto ¢ &;, T) it follows that every conjugate of T in (§&;, 1)
is also conjugate of T in G and conversely. The subgroup generated by all these
conjugates, denoted as S in Theorem 3, is contained in G and in the first factor
of ¢ in (*).

We will factor out the normal subgroup S from both Gand ¢ . Sincet € S
it follows that

= (&) x (Y)Y,

= (o) = (&),

vl wlw|




PERMUTATION GROUPS 51

where 7 is the coset nS. This factor will be used in two ways: We will
determine the index of S in G and thereby determine the order of G and we
will also determine the smallest power of y that lies in G thereby finding the
kernel of p.

We are dealing with a two-generator abelian group /S and the subgroup
G/S generated by the product of the two generators. The first generator &,
has order ¢, the number of connected components of the graph I'(§;, 7). Let
g denote the order of y. Note that g is also the order of y because
S N (y) = e. Then the order of ¢ = &y is the least common multiple of ¢
and g, denoted as [t, g]. Thus the order of G is the order of S times [7, g].
The order of (&;, 1) is the order of S times ¢ (as we known from Theorem 3)
and p maps G onto this group. Hence the kernel of p has order

_Isling _[tel _ ¢
| S|t t (e

| ker p|

where (¢, g) is the greatest common divisor of ¢ and g. Since the order of vy’
is g/(t,g) it follows that vy’ generates the kernel of p; we have
G n (y)=<(yH.

We summarize this case in a theorem.

THEOREM 5. Suppose o = &.&, -+ - &, is the cycle decomposition of o
and v = (a, b) is a transposition with both a and b moved by the cycle
&, appearingin o. Let G={c,t). Let y==E& 'c andlet n be the
order of ¢&,,g the order of y and 't the number of connected
components of the graph T (K&,t),T) and k = n/t. Then the sub-
group S of G generated by all the G-conjugates of T is isomorphic to
the direct product of t copies of Sym (k). The quotient group G/S is
cyclic with order [t, gl, the least common multiple of t and g. The order
of G is (k")'[t,gl. The homomorphism p:G — (&,1) defined by
restricting the action of G to the set of symbols moved by &, has kernel
yh).

Example 3. This example illustrates the ideas used in the proof of
Theorem 5. Let 6 =(1,2,3,4,5,6)(7,8,9) and 7 =(1,3). Then
& =(1,2,3,4,5,6) and vy = (7, 8, 9) in the notation of Theorem 5. We first
describe the group <(&,Tt) wusing Theorem 3 and the graph
I'=T((&,7),1). The lowest power of &, that has the same effect as T on
1is £7. Thus the number of components of T is ¢ = ged(6, 2) = 2. Thus the
components of I' have vertex sets {1, 3, 5} and {2, 4, 6} as we find by applying
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- powers of &; to {1, 3}. Thus the subgroup generated by the G-conjugates of
ris S =8, X S, with each S; = Sym(3).

The group G = (o, 1) admits a homomorphism p onto < §,, ) defined
by restriction of elements of G to the action induced on {1, 2, 3,4, 5, 6}, the
set moved by &;. The kernel of p is the subgroup of G fixing the symbols 1,
2, 3,4, 5, 6. The kernel was shown to be G n {y) = {(y’). Since t = 2 and
vy = (7, 8,9) has order 3, it follows that the kernel of p is the group (y) of
order 3. The group G must also contains &, = ¥ ~!c and so we have the
decomposition

G=<(o,7)=1((1,2,3,4,5,6)(7,8,9),(1, 3)>
= <E)1’T> X <’Y> = <(1’293’4,576)9(173)> X <(7’8’9)>‘

The order of G is (3!)-2-3 = 63.

If this example is changed by letting o = (1, 2, 3, 4, 5, 6)(7, 8), so that
v = (7, 8), but keeping the same 1 then ¢ is unchanged and so the kernel of
pis (y2) =e. Thus p: G — (&, 1) is an isomorphism. The order of G is
- (3N2- 2.

The two cases covered by Theorems 3 and 5 take care of the difficult cases.
All the remaining cases can be handled quickly.

Third Case. © = (1,2) and 6(1) =1 and o (2) = 2; i.e. ¢ fixes the two
symbols moved by 1. Then

G=(0,T1)=(0) X(1)
is the direct product of two cyclic groups.

Fourth Case. ©=(1,2) and 6 = (1,4, -, a,) 2, b, -+, bs)y where
r>=1,s 2 1; i.e. c moves at least one of the symbols moved by t and if it
moves both, they do not appear in the same cycle of 6. If r = 1 then (1) = 1;
similarly for s = 1. If r = s = 1 then we are in the third case so we may assume
~either r or s is greater than 1. It is assumed that this is the cycle decomposition
of ¢ and that v is the product of the disjoint cycles not moving 1 or 2. Then
- we let o; be the element

op=01t=(,a," ,a)2,b, -, b5)y(1,2)
= (lst’ '."bsazsaZ’ '.'sar)y .
 Since the group generated by o and 7t is the same as the group generated by

o, and 1, we may replace 6 by 6,. We are back in the first case now because
~both 1 and 2 are moved by the same cycle appearing in the generator o;.




PERMUTATION GROUPS 53

We may collect the results as follows.

SUMMARY. Let G = (o, 1) with o6, T € Sym(n) and T a transposition.
If o is an n-cycle, the G is described in Theorem 3.

If ¢ is a product of disjoint cycles, one of which moves both the symbols
moved by 1, then G is described in Theorem 5.

If o fixes both symbols moved by T then G = (o) X (1) is an abelian
group.

If 6 moves one, but not both of, the symbols moved by 1 or if 6 moves
both symbols moved by 1 but not in the same cycle then ¢ may be replaced
by 6, = 76 and then G = (o,,t) and G is described as in case 1 or 2.
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