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with classifying element (over the rationals) xy € H 2(T?; Q), where x and y
are one-dimensional generators. The minimal model of M is then given by

AM) = A(x, y,z) deg(x) = deg(y) = deg(z) = 1
with dx = 0 = dy and dz = xy. Additive generators for cohomology are then,
H':x,y
H?: xz, yz (Massey products!)
H3:zyx .
Note that cup(M) = 2, but cat(M) = 3.
In some sense then, the proof of Theorem 1 is simply an observation that

the techniques of rational homotopy theory work particularly well for
nilmanifolds.

PROBLEM. If = is not nilpotent, then a K(m, 1) is not a nilpotent space,
so the minimal model does not describe a ‘‘rational type’’. Is it possible,
however, that enough information about a K(x, 1) is present in the model to
determine its category (in the compact case say)?

§5. HIGHER DEGREE ANALOGUES

An analogue of the minimal model of a nilmanifold is one of the form,
(A(xy, * - x,),d), degree(x;) = odd .

Such an algebra is known to satisfy rational Poincaré duality (see [5]) and to
have formal top dimension Zideg(xi). But, plainly, the same argument as
before applies to show that the ‘‘only’’ element in this exterior algebra which
can reach the stated dimension is x; - - - x,,. Hence (since this is the longest

product in A), the fundamental class is maximally represented by a product
of length n and

LEMMA. ¢ey(A) = n.

Now, we may consider A as built up by adjoining odd generators one at
a time (with decomposable differential). Let AZ be a minimal cdga and y of
odd degree. Then

PROPOSITION. (See Theorem 4.7 and Lemma 6.6 of [3].)

catog(AZ ® Ay) < catg(AZ) + 1.
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Proof. Suppose cato(AZ) = m. Then AZ is a retract of AZ/A>"Z and
'we see that AZ @ Ay is a retract of AZ/A>"Z ® Ay. Now, the maximal
‘product length of AZ/A>"Z @ Ay is m + 1 and this is sufficient to ensure
catf(AZQAy) <m+ 1. [

Now, by induction, we see that caty(A) < # (since for x; of odd degree
cato(Ax;) = 1). Putting this together with the Lemma gives

THEOREM 2. If A = (A(x, - x,),d) with deg(x;)) = odd for
each i, then caty(A) = n.

This result may be applied, for example, to a manifold obtained as an
iterated principal bundle. That is, for compact Lie groups G;,i = 1 to N.

I M, = Gy; M; is obtained from M;_; as a principal G;-bundle over M;_;.
M = MN

Each G, is, rationally, a product of rank(G;) odd spheres, so the minimal
' model of M has the form,

AM) = (MG, - x),d)
with deg(x;) = odd and s = YN, rank(G)).

COROLLARY. catg(M) = Ef\’: , Tank (G;).

COROLLARY. If M is an iterated principal bundle with fibres G,
' then the number of critical points of any smooth function on M is bounded
“below by Y, rank(G;) + 1.

‘ Note that we have not determined cat(M), so the true effectiveness of
Lusternik-Schnirelmann theory may not have been exploited.

§6. GANEA’S CONJECTURE

The Ganea Conjecture states that, for a finite CW complex X,
cat(X X Sk) = cat(X) + 1 for any sphere S¥. Although unproven in general,
évarious cases of the conjecture have been shown to be true. We add
'nilmanifolds to that list:

THEOREM. Ganea’s Conjecture is true for nilmanifolds.
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