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364 S. ELIAHOU AND M. KERVAIRE

The remaining candidates are listed below, together with an indication in
parenthesis showing that each one (except 505) is excluded by Theorem 2 in
Section 2: if N has a prime factor p such that p/ = — 1 mod N’, where N’
is the largest divisor of N relatively prime to p, then there is no (periodic)
Barker sequence of length 4N2.

REMAINING CANDIDATES (excluded by Theorem 2, except N = 505.)

N N

65=5-13 (52 = — 1 mod 13) 425 = 52-17 (58 = — 1 mod 17)
85=5-17  (17*= —1mod5) 445 = 5 - 89 (89 = — 1 mod 5)
145 =5-29 29 = — 1mod)5) 481 = 13 - 37 (37% = — 1 mod 13)
185 =5 - 37 (37?2 = — 1 mod 5) 485 = 5-97 (972 = — 1 mod 5)
205 = 5 - 41 (59 = — 1mod4l1) 493 = 17 - 29 (172 = — 1 mod 29)
221 =13 - 17 (132 = — 1mod 17) 505 =5-101
265=5-53  (532= —1mod>5) 533 = 13-43 (433 = — 1 mod 13)
305 = 5 - 61 (515 = — 1 mod 61) 545=5-109 (109 = — 1 mod 5)
325 =5%2-13 (52 = — 1mod 13) 565 =5-113 (1132 = —1mod5)
365=5-73  (732= —1mod5) 629 =17-37 (378 = —1mod17)
377 =13-29 (137 = — 1 mod 29) 685 =5-137 (1372 = — 1 mod5)

The case N = 505 = 5 - 101 cannot be excluded by Theorem 2, because
101 = 1 mod 5 and 5% = 1 mod 101. However, 505 can still be excluded by
Turyn’s Inequality, as observed in [JL]: choosing p = 101 and w = 2 - 1012,
so that p is trivially semi-primitive modulo w, we would have

p< L 252250,
w
a contradiction to the assumed existence of a Barker sequence of length
4 - 5052,

The first open case is thus N = 689 = 13 - 53. We have 53 = 1 mod 13 and
1313 = 1 mod 53, so that neither 53 is semi-primitive mod 13, nor 13 is semi-
primitive mod 53. The next open case is N = 793 = 13 - 61.

4. THE USE OF THE MULTIPLIER THEOREM

In this section we give the details of some (typical) non-existence proofs
needed to establish the tables, using the multiplier theorem.

Recall that if D is a cyclic difference set with parameters (v, k, ), and if
n = k — A is greater than A, then the group of multipliers of D contains the
intersection M in (Z/vZ)* of the subgroups generated by /, ..., [,, where
li, ..., [, are the prime factors of n.
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(1) Parameters (v = 181, k = 81, A = 36), Table I with t = 9.

Here, n = 32 - 5, and since 5 = 3% mod 181, the multiplier theorem says
that if an abelian difference set exists with these parameters, then 5 is a
multiplier. The orbits of the multiplication by 5 in Z/181Z are {0} and
12 orbits of cardinality 15, e.g.

{1, 5, 25, 125, 82, 48, 59, 114, 27, 135, 132, 117, 42, 29, 145} .

(Note that 181 is a prime number.) No subset of G = Z/181Z of cardinality
k = 81 may thus be a union of orbits.

(2) Parameters (v = 4901, k = 2401, A = 1176), Table I with t = 49.

Here, n = 52 - 72, We have 25 = 52 = 7% mod 4901. Therefore, if an abe-
lian difference set exists, m = 25 must be a multiplier. Writing the group
G = 7Z/4901Z as G = Z/132?Z x Z/29Z, with group operation (a, b) - (a’,b")
= (a@+a’,b+ b’), the orbits under multiplication by m = 25 are

E =1{00,0)}
U ={(13i,0), (- 135,0)} i=1,2,3,4,5,6
Vi=10,0), 25},0), (118/,0), (77/,0), (66/,0), (129/,0), (144,0), (12/,0),

(1314,0), (64/,0), (794,0), (1164,0), (27/,0), (—/,0), ...}
J=1,...,6, each V; of cardinality 26.

X ={(0,1), (0,25), (0,16), (0,23), (0,24), (0,20), (0,7)}
Y ={(0,2), (0,21), (0,3), (0,17), (0,19), (0,11), (0, 14)}
X ={0, -x10,x € X}
Y ={(0,-»)1](0,y) € Y}

each of cardinality 7.

There are moreover, the 24 orbits U;- X, U, - )_(, u-Y U- Y of
cardinality 14, where

A-B={a-blaecA,beB}.

Finally, there are 24 orbits V- X, V;- X , Vi Y, V- Y of cardinality 182.
Contrary to the preceding example, there are many ways of writing the
cardinality 2401 of a putative difference set D as a sum of numbers taken from
the set of orbit cardinalities.

To ease calculations, we view a subset § C G as the element Y ses S in the
integral group ring. Note that, with this convention, the product S - T in ZG
coincides with the element of ZG associated with the product set
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S-T={s-t|seS,te T} A difference set D, if it exists with the above
parameters, can be written as

D=C+ AX + BY + PX + QY
where C, as well as A, B, P, Q, is of the form

6
B;U; + E YiV;

1 Jj=1
with coefficients a, By, ..., Bs, Y1, ..., Y¢ all equal to 0 or 1.
As in Section 1, D is a difference set if and only if

C=0oF +

i

[N g =)

DD = 1225 + 1176 - (1+ Y Ui+ ¥ V;-) 1+ X+X+Y+7Y).

Now, writing G = G, X G, as above, G, = Z/132Z, G, = Z/29Z, let_n: G
= ZG, be the projection on the group ring of G;. We have nX = nX = nY
= nY = 7, and reducing modulo 7,

n(DD) = CC = 0 in F,G, .

The involution of ZG, sending (a, b) to (a, b) = (—a, — b), is the identity
on U, V;:

(],"'—‘Ui f}j=l/j.

Therefore C = C and C? = 0 in F,G,. However, F,G,, where G, is of order
132, prime to 7, is a semi-simple algebra and does not contain any nilpotent
element. It follows that C =0 in F;G;. Since the coefficients of
C=aE+ Y, BU+ X;_,v:V; are all 0 or 1, this implies C =0 in
7G,, i.e.

D =AX + BY + PX + QY ,
and 7D = 7 - S with

S=r+ ZS,‘U,"'*‘ Etjl/j’
where S =A + B+ P + Q. Thus, all coefficients r, sy, ..., Ss, {1, ..., tg are

non-negative in_tegers < 4.
Again n(DD) = 1225 + 1176 - (1 + Y, U; + Y. V;) -29. Therefore,

6 6
S2 = 25 + 696 (1}+ Y U+ Y Vj).

i=1 Jj=1
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With our (abuse of) notation, we set Gy =1+ Y U+ Y, V;. Then,
G? = 169 - G,. Thus, we see that

S==x(5+2G)

are solutions of S? = 25 + 696 - G;. We claim that there is no other. This
will clearly finish the non-existence proof since r < 4. Note the decomposition

QG; = Q X Q(C13) X Q(Cieo)

of the algebra QG as a product of fields, where {5 is a primitive 13-th root
of unity, and ;¢ a primitive 169-th root of unity.

The element G, = 68 _ 2% e G, corresponds on the rlght hand side to
(169, 0, 0) since ;3 and C169 are roots of the polynomial Z v - o X*. It follows
that S2? = (3432,52,52). Hence, any solution Z e ZG, of the equation
72 = 25 + 696G, must correspond to (+ 343, +5, £5). Changing Z to — Z,
we can assume Z = (343, + 5, =+ 5). Now, the diagrams

ZG, — Z[Gs]

. !
7z - Fi3
and
1G, — Z[Cie]
! )
7z - |

where the right vertical arrows send {3, resp. {10 to 1 € Fy3, are commuta-

tive. Since 5 is not congruent to — 5 modulo 13, and 343 maps to + 5 € Fy3,
we see that Z = (343,5,5) =S

(B) Parameters (v = 13613, k = 6724, A = 3321), Table I with t = 82.

This case is as simple as case (1). Indeed, n = 3403 = 41 - 83. Since
41 = 833 mod 13613, it follows from the multiplier theorem that if a cyclic
difference set D with parameters (13613, 6724, 3321) existed, then 41 would
be a multiplier, and D could be taken to be a union of orbits under multiplica-
tion by 41 on the cyclic group Z/13613Z.

The order of 41 modulo 13613 is 3403, and beside the one-point orbit {0},
there are 4 orbits X, iX, i?X, i3X each of cardinality 3403, where

X ={1, 41, 1681, ..., 13281}
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and i is a square root of — 1 mod 13613, e.g. i = 165. Note that 13613 is a
prime number.

However, 6724 is not of the form ny + 3403n, with ny =0 or 1 and
0 < n; < 4. No difference set can therefore have the above parameters.
4), (5), (6) Parameters (v,k,\) = (33,13,6), (35,121,60) and (73,171, 85)
of Table II, with n = 7,61 and 86 respectively.

More generally, we will consider the case

p2t+1 . | p2t+1 -3
(U’k9>") = p2t+l’ s ’
2 4
where p is a prime = 3 mod 4.
We haven =k — A = —4———— . Let /,, ..., [, be the primes dividing n.

The group of multipliers for a putative difference set D with the above
parameters contains the intersection M in (Z/vZ)* of the subgroups generated
by Iy, ..., .. Since (Z/vZ)* is cyclic, M is the unique subgroup of (Z/vZ)*
whose order is the greatest common divisor of the orders ¢, ..., q, of
li,....,1, in (Z/vZ)*. We will now assume that the orders q,, ..., g, of the
prime factors /,, ...,[, of n = k — A in (Z/vZ)* are all divisible by p‘+!.

THEOREM. There is no cyclic difference set with parameters

0, k1) = (pzf“,pzm mh Y b _3) ,

p 4

where p is a prime = 3 mod 4, provided that the orders q,,...,q, of
the prime factors I,,...,I, of n=k— N in (Z/vZ)* are all divisible
by pt+ 1 .

Note that the hypotheses of the theorem above are satisfied for the three
examples we have in mind. (Cases n = 7,61 and 86 in Table II.)

(1) n=7:p=3,t=1, and 7 is of order 32 modulo 27;

2) n=6l:p=3,t=2, and 61 is of order 3* modulo 243;

(3) n=86:p=7,t=1, and 2 is of order 3 - 72 modulo 343, 43 is of
order 72 modulo 343.

As expected, the hypothesis on the orders of the prime factors of »n is not
113 4+ 1

satisfied in general. It fails for instance for p = 11, £ = 1: here n =

= 333 = 32 - 37 and whereas 37 is of order 5 - 112 modulo 113, 3 is only of
order 5 - 11 modulo 113.
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However, failure of the hypothesis seems fairly rare: the next example with
t = 1 occurs for p = 3511. Note that 3511 is special for another reason: it
satisfies the congruence 2?-! =1 mod p?2, the only other known solution
being the famous p = 1093. Such prime numbers are known in the literature
as Wieferich prime numbers.

p2t+l + 1
The behaviour of the orders of the prime factors of n = —4— in

(Z/p*+1Z)* is probably a difficult question.

Proof of the Theorem. The hypothesis on the orders ¢, ..., g, means
that m = 1 + p*, which generates the subgroup of order p+! in (Z/p? +1Z)*,
is contained in all the subgroups </, >, ..., </, > of (Z/p*+'Z)*, and thus
is a multiplier of any candidate difference set D C Z/p?'+!Z with the above
parameters.

What are the orbits of multiplication by m =1 + p’ in the ring
Z/p**'Z? If a; = i- p'*!, then a - m = @ mod p?'+!, Hence, there are p!
fixed points ay = 0, ay, ..., @pr_;.

More generally, if a; ; = ip’~/+! with 1 <i< p’— 1 and ged(i,p) = 1,
J=1,...,t + 1, then a; ; produces an orbit {a; ;m"}, -, .., _ of length p/.
Here, we use the formula

ceny

(1 +pt)ps = 1 + pt+S mOd (pt+s+l)

easily proved (for p odd) by induction on s, and which implies that m has
(multiplicative) order p/ modulo p’+/.

The orbits A4;; of a;; with ie Z/p'Z for j=0 (@;,0=a;), and
i€ (Z/p'L)* for j =1, ...,t + 1 are easily verified to be disjoint. Together,

they sweep out
t+1

p'+ Y (p-1p'-! pi=pr+i
j=1
elements of the group Z/p2'*+!'Z. Hence, A;; with ie Z/p'Z for j =0
(@i,0=a;), and ie (Z/p'Z)* for j=1,..,t+ 1 is the complete collec-
tion of orbits under multiplication by m = 1 + p’in Z/p+1Z. At this point,
it may be more convenient to write the group ring of Z/p*+1Z as
Z[x]/(x?**' — 1). Identifying a subset A C Z/p?*+1Z with the sum of the

corresponding elements ), 2c 4@ 1n the group ring, the orbits A; j can then be
written as

pl =1
Ai,j — Z xip!~itimy

v=20
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If a difference set D with the above parameters exists, it must be of the form

t+1

D= ) x"'+ ¥ ) Ay
iESO Jj=1 iESj

where S, C Z/p‘Z and S; C (Z/p'Z)* for j=1,...,t+ 1. Now, let
n: Z[x]/ (xP**' — 1) > Z[y]/(y? — 1) be the projection of the group ring of
Z/p*+1Z onto the group ring of the cyclic group of order p. We have
n(x) = y and

nAj,j =pi for j=0,1,...,f

TA; 1 =p'*t-yt for e (Z/p'Z)* .

It follows that

nD =5y + ps; + - +p‘s,+p’+‘( Y, y"),

i€S8r41

where s; = Card(S)).
Let N =5+ ps;+ -+ + p's,and a, = Card{i|i € S;,,,i = n mod p},
then

nD =N+ p'tlY,
with Y= Y7 a,y*. (Note that o is indeed 0 as S, C (Z/p'Z)*.)
Therefore n(DD) = n(D)n (D) has the form

_ p-1 _
n(DD) = N> + Np'*1 '} a,(y*+y~*) + p+2YY .
p=1
On the other hand the condition for D being a difference set yields, after
applying =,

_ 2t+1 4 1 2t+1 _ 3 p—1
n(DD) = 2 3 £ pr | X »)|.
4 4 p=20

We will reach a contradiction by comparing the constant terms (coefficient

of 1 in Z[y]/(¥? — 1)) in the two expressions for n(Dl_)):
p—1 2t+1 2t+1
p + 1 p -3
N2 + p2z+z Z aﬁ — + p2t .
p=1 4 4

Note that £ = Card(D) = N + p‘*ls,,,, where s,.; = Card(S;,,), and

2t+1 __

hence N = ———2—— — p'*ls,, . Substituting this in the above equation,
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we get
4s,41=3p"~(p—1) mod p'*!.

Writing 4s,,; =3p'"~'(p—1) +z-p'*! for zeZ, we observe that
p =3 mod 4 implies z=2 mod 4, and so 2p'*!' |z p'*!|. But, s,
= Card(S,,;) < p'~Y(p -1, since S, C (Z/p'Z)*. 1t follows that

|z p'*| < Jds = 3p- Y p -1 <3p'-Y(p—1) <2p*1 |z ptHt.

We have reached the desired contradiction, i.e. no cyclic difference set

) p2t+1_1 p2t+l_3 . )
with parameters | p?'+1!, > . 1 exists if the orders of the

2t+1 0 1 o
prime factors of n = ‘UT in (Z/p?'+1Z)* are all divisible by p’+!. []

(7) Parameters (v =399, k = 199, A = 99), Table II. This is the last item in
Table II, corresponding to n = k — A = 100.

Since 4 = 22 = 58 mod 399, it follows that 4 must be a multiplier of any
abelian difference set D with the above parameters.
Writing Z/399Z as a direct product
7/399Z = Z/3Z x Z/7Z x Z/19Z ,
and accordingly writing the elements of Z/399Z as triples g = (x,,2),
xe /31,y € Z/TL, z € Z/19Z, we have the following orbits of the multipli-
cation by 4 in Z/399Z: all monomials XYZ, with X e{1,U, U},
Ye{l,V,V}, Ze {1, W, W}, where
1 ={(0,0,0)}
U=1{1,0,0)}
V =1{(0,1,0), (0, - 3,0), (0,2,0)}

w=1{(0,0,1), (0,0,4), (0,0,-3), (0,0,7), (0,0,9), (0,0, — 2),
0,0, —8), (0,0,6), (0,0,5)},
and bar denotes the conjugate, i.e. if C C Z/vZ, then C = {—¢glgecC).
All orbits, except 1, U, U have cardinality divisible by 3. Since
k =199 = 1 mod 3, any putative difference set D can be assumed to contain

a single one-point orbit 1, U or U. Multiplying D by U or U if necessary, we
may assume that
D=1+A-V+B-V+P-W+Q- W,
where _
A=(10+(11U+(12U,0 a;

<o; <1,
B=Bo+BlU+BZU,0<ﬁi<1

s

and P, Q are polynomials in U, U and v, V.
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We first show that 4 and B must be 0. Let ¢ = ag + a; + a5,
b= Po+ B: + B, and let w: Z/399Z — Z/7Z be the projection on the second
factor.

We indulge in various abuses of notation: we write m for the group ring
projection as well and denote nV again by V. Note that nU = nU = 1,
TW=nW=9.ThennD=1+aV + bV mod9, a congruence in the group
ring of Z/7Z.

Since DD =100+ 99 - (1+ U+ U) (1 + V+ V) (1 + W+ W), the equa-
tion expressing that D is a difference set with the required parameters, we have
DD =1 mod 9.

Consequently, using

VV =3+V+V, V:=V4+2V, V2=2V+V,
we get, expanding n(D[)) = n(D)n(l_)), and after collecting terms,
3(a2+ b)) + (@+b+a>+b2+3ab)(V+V)=0 mod 9.

Thus, a? + b? =0 mod 3, and this means ¢ = b =0 mod 3. But then
a? + b? + 3ab = 0 mod 9, and so we must also have

a+b=0 mod?9,

after looking at the coefficient of V + V in the above congruence.

Since 0<a<3,0<b<3, this means a=b=0 and therefore
A = B = 0. Any difference set D with parameters (399, 199, 99) can therefore
be assumed to have the form

D=1+P-W+Q W.
Plugging D=1+P - W+ Q- W into the equation
DD=100+ 91+ U+ ) Q+V+ V)1 + W+ W)

and using the multiplication table

WW=9+4W+ W), W2=4W + 5W,
we get

1+9PP+00)=100+99(1 +U+U)(A +V+ V)
P+QO+4PP+Q0)+5PO+4PQ =91 +U+U)(1+V+V),
where
P=py+pU+pU+ (ps+pU+psO)V + (ps+ prU+ ps UV
Q=g+ qU+ qU+ (gs+qU+qgsU)V + (gs+ q:U + qsU)V
with 0 < p;,q;: <1, fori =0,...,8.
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The first equation gives
PP+00=11+11A+U+0U)(Q+V+V).
Substituting in the second equation, we get
) P+Q+SPQ+4PQ=—44+551+U+0)1A+V+7V).

Since UU=1, U?=Uand VW =3+ V+V, V2= V+82f/, the constant
- = 2

terms in PQ and PQ are equal to E,.:Op,-qi + 3 Ej=3quj = ¢, say.

Hence, equating constant terms in the above equation (*), we must have

p0+q0+90=11.

The only solution to this equation with all p;, g; being 0 or 1, is py = go = 1,
pi=q;=0for i=1,...,8. This means P = Q = 1, contradicting (*).

5. COMMENTS ON THE EXAMPLES IN TABLES II

Difference sets with parameters (v,k,A) = (4n—1,2n—1,n— 1) are
usually called Hadamard difference sets. Our purpose here is to discuss the
classification of these cyclic difference sets for 2 < n < 100.

In many cases where v = 4n — 1 is a prime p, the quadratic residue
difference set, which we denote by QR (p) is unique for the given values of
the” parameters. This is obviously the case if the multiplier m has order

1
k = 5 (v —1) in (Z/vZ)*. Indeed, in this case, there are exactly 3 orbits of

multiplication by m in Z/vZ, namely 1 = {0}, M = {1, m, m?, ..., mk-1}
and M = {—1, —m,..., — m¥-1}, Thus the only choice for D is D =M
or D= M, which are isomorphic under conjugation o:Z/vZ — Z/vZ,
c(a) = —a.

In our Table II, this situation happens for n = 3, 5, 6, 12, 15, 17, 18, 20,
21, 27, 33, 35, 41, 42, 45, 48, 53, 57, 60, 63, 66, 68, 77, 87, 90 and 96.

The remaining cases where v = 4n — 1 is a prime p (for 2 < n < 100) have
been shown to lead to a single difference set, namely QR(p), by machine
enumeration of the various choices of D as a union of orbits under multiplica-
tion by a multiplier m. This includes the cases n = 26 (multiplier 8), n = 38
(multiplier 19), n = 50 (multiplier 5), n = 78 (multiplier 13), n = 83 (multiplier
83), and n = 95 (multiplier 5). By far, the most difficult case (for the machine)

occurs with n = 38, which required the examination of 37 442 160 combina-
tions of multiplier orbits.
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