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364 S. ELIAHOU AND M. KERVAIRE

The remaining candidates are listed below, together with an indication in
parenthesis showing that each one (except 505) is excluded by Theorem 2 in
Section 2: if N has a prime factor p such that pf - 1 mod N', where N'
is the largest divisor of N relatively prime to p, then there is no (periodic)
Barker sequence of length AN2.

Remaining candidates (excluded by Theorem 2, except N= 505.)

N N
65 5 • 13 (52 - 1 mod 13) 425 52 • 17 (58 - 1 mod 17)

85 5 • 17 (172 - 1 mod 5) 445 5 • 89 (89 s - 1 mod 5)
145 5 • 29 (29 - 1 mod 5) 481 13 • 37 (37 6 - 1 mod 13)
185 5 • 37 (37 2 - 1 mod 5) 485 5 • 97 (97 2 - 1 mod 5)
205 m 5 • 41 (510 - 1 mod 41) 493 17 • 29 (172 - 1 mod 29)
221 13 • 17 (13 2 - 1 mod 17) 505 5 • 101

265 5 • 53 (53 2 s - 1 mod 5) 533 13 • 43 (433 s - 1 mod 13)

305 5 • 61 (515 - 1 mod 61) 545 5 • 109 (109 - 1 mod 5)

325 52 • 13 (52 - 1 mod 13) 565 * 5 • 113 (113 2 - 1 mod 5)

365 5 • 73 (73 2 - 1 mod 5) 629 17 • 37 (378 s - 1 mod 17)

377 13 • 29 (137 - 1 mod 29) 685 5 • 137 (137 2 - 1 mod 5)

The case N 505 5 • 101 cannot be excluded by Theorem 2, because

101 1 mod 5 and 5 25 s 1 mod 101. However, 505 can still be excluded by

Turyn's Inequality, as observed in [JL]: choosing p 101 and w 2 • 1012,

so that p is trivially semi-primitive modulo w, we would have

p < - 2•52 50
w

a contradiction to the assumed existence of a Barker sequence of length
4 • 5052.

The first open case is thus N 689 13 • 53. We have 53 1 mod 13 and
1313 1 mod 53, so that neither 53 is semi-primitive mod 13, nor 13 is semi-

primitive mod 53. The next open case is N 793 13-61.

4. The use of the Multiplier Theorem

In this section we give the details of some (typical) non-existence proofs
needed to establish the tables, using the multiplier theorem.

Recall that if D is a cyclic difference set with parameters (u,k9X), and if
n k - X is greater than X, then the group of multipliers of D contains the

intersection M in (Z/uZ)* of the subgroups generated by lÏ9 ...,/r, where

l\, lr are the prime factors of n.
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(1) Parameters (v - 181, k 81, X 36), Table I with t 9.

Here, n 32 • 5, and since 5 36 mod 181, the multiplier theorem says

that if an abelian difference set exists with these parameters, then 5 is a

multiplier. The orbits of the multiplication by 5 in Z/181Z are {0} and

12 orbits of cardinality 15, e.g.

{1, 5, 25, 125, 82, 48, 59, 114, 27, 135, 132, 117, 42, 29, 145}

(Note that 181 is a prime number.) No subset of G Z/181Z of cardinality
k 81 may thus be a union of orbits.

(2) Parameters (v 4901, k 2401, X 1176), Table I with t 49.

Here, n 52 • 72. We have 25 52 76 mod 4901. Therefore, if an abelian

difference set exists, m 25 must be a multiplier. Writing the group
G Z/4901Z as G Z/132Z x Z/29Z, with group operation (a, b) • (a',b')

{a + a', b + b'), the orbits under multiplication by m 25 are

E ={(0,0)}
G, {(13/,0),(-13/,0)} / 1, 2, 3, 4, 5, 6

Vj {(y, 0), (25./, 0), (118./, 0), (777,0), (667,0), (129/, 0), (147,0), (127,0),
(1317,0), (647,0), (797,0), (1167,0), (277,0), (-7,0),...}
7 1,..., 6, each of cardinality 26.

X {(0,1), (0,25), (0,16), (0,23), (0,24), (0,20), (0,7)}
Y {(0,2), (0,21), (0,3), (0,17), (0,19), (0,11), (0,14)}

X {(0, - x)I(0,x) e X)
Y ={(0,-y) |(0,y) e Y}

each of cardinality 7.

There are moreover, the 24 orbits (J, • X, Ut X, U, • U, Y of
cardinality 14, where

A • B {a bI a e A, b B)

Finally, there are 24 orbits V, X, V,Vr Y of cardinality 182.
Contrary to the preceding example, there are many ways of writing the
cardinality 2401 of a putative difference set as a sum of numbers taken from
the set of orbit cardinalities.

To ease calculations, we view a subset C as the element £ seSs in the
integral group ring. Note that, with this convention, the product Tin Z
coincides with the element of ZG associated with the product set
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S - T {s - t\s e S, t e T}. A difference set D, if it exists with the above

parameters, can be written as

D C + AX + BY + PX + QY

where C, as well as A, B, P, Q, is of the form

C aE + £ ßiUi+ t yjVj
i 1 7 1

with coefficients a, ßi, ß6, Yi> •••> Ï6 all equal to 0 or 1.

As in Section 1, D is a difference set if and only if

DD 1225 + 1176 • |l+ £ u< + ü j * (1 + * + X + r +

Now, writing G Gj x G2 as above, Gi Z/132Z, G2 Z/29Z, let tu: ZG

- ZGi be the projection on the group ring of G\. We have nX nX n Y
71F 7, and reducing modulo 7,

7t(Z)Z)) CC 0 in F7Gj

The involution of ZG, sending (a, b) to (a,b) (- a, - b), is the identity
on Ui9 Vj:

jjt Ui9 Vj

Therefore C C and C2 0 in F7Gi. However, F7Gi, where Gx is of order
132, prime to 7, is a semi-simple algebra and does not contain any nilpotent
element. It follows that C 0 in F7Gi. Since the coefficients of
C aE + Yé /= i ß/^/ + j YiVj are all 0 or 1, this implies C 0 in

ZGi, i.e.

D AX + BY + PX + QY

and kD 7 • S with

6 6

S r+ £ 5,t/, + £
i 1 7=1

where S A+ i? + P+<2. Thus, all coefficients r, ...,s6> ^,..., t6 are

non-negative integers ^ 4.

Again 7t(Z>Z)) 1225 + 1176 • (1+ £ t/, + £ '29- Therefore,

S2 25 + 696 • |l.+ £ C/f + £ Fyj
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With our (abuse of) notation, we set Gi 1 + £ + Ü Then,

G\ 169 • Gi. Thus, we see that

S±(5+ 2GO

are solutions of S2 25 + 696 • Gi. We claim that there is no other. This

will clearly finish the non-existence proof since < 4. Note the decomposition

QG, Q x Q(Ci3) X Q(Ci69)

of the algebra QG, as a product of fields, where Çi3 is a primitive 13-th root

of unity, and Ci69 a primitive 169-th root of unity.

The element G,£ 0 zk e ZGi corresponds on the right hand side to

(169,0,0) since Ç13 and Çi«9 are roots of the polynomial £ 11 follows

that S2(3432,52,52). Hence, any solution ZeZG, of the equation

Z2 25 + 696Gi must correspond to (±343, ± 5, ± 5). Changing Z to - Z,

we can assume Z (343, ± 5, ± 5). Now, the diagrams

ZG! - ZKu]
I I
z -» f13

and
ZG! - ZK,»]
I I
Z - F, 3

where the right vertical arrows send Ç13, resp. Ç169 to 1 e F13, are commutative.

Since 5 is not congruent to - 5 modulo 13, and 343 maps to +5 e Fu,
we see that Z (343,5,5) S.

(3) Parameters (u 13613, k 6724, A. 3321), Table I with t 82.

This case is as simple as case (1). Indeed, n - 3403 41 -83. Since

41 833 mod 13613, it follows from the multiplier theorem that if a cyclic
difference set D with parameters (13613, 6724, 3321) existed, then 41 would
be a multiplier, and D could be taken to be a union of orbits under multiplication

by 41 on the cyclic group Z/13613Z.
The order of 41 modulo 13613 is 3403, and beside the one-point orbit {0},

there are 4 orbits X, iX, i2X, PX each of cardinality 3403, where

X={1, 41, 1681, 13281}
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and i is a square root of - 1 mod 13613, e.g. / 165. Note that 13613 is a

prime number.

However, 6724 is not of the form n0 + 3403^1 with n0 0 or 1 and
0 ^ nx < 4. No difference set can therefore have the above parameters.
(4), (5), (6) Parameters (v,k,X) (33,13,6), (35,121,60) and (73,171,85)
of Table II, with n 7,61 and 86 respectively.

More generally, we will consider the case

/ p2t+ 1 _ i pit+i - 3 \
(u,k,X) P—

where p is a prime s 3 mod 4.

p2i+\ + I
We have n k - X Let lx, lr be the primes dividing n.

4

The group of multipliers for a putative difference set D with the above

parameters contains the intersection M in (Z/uZ)* of the subgroups generated

by /i,..., lr. Since (Z/uZ)* is cyclic, M is the unique subgroup of (Z/uZ)*
whose order is the greatest common divisor of the orders qx, qr of
lx, ...,/r in (Z/vZ)*. We will now assume that the orders qx, ...,qr of the

prime factors lx, lr of n k - X in (Z/vZ)* are all divisible by pt+l.

Theorem. There is no cyclic difference set with parameters

1
p2t+l — 1 p2t + l — 3

N

(u,k,X)= p2'4

where p is a prime 3 mod 4, provided that the orders qx, qr of
the prime factors lx, ...,/r of n k - X in (Z/uZ)* are all divisible

by pt+1.

Note that the hypotheses of the theorem above are satisfied for the three

examples we have in mind. (Cases n 7,61 and 86 in Table II.)
(1) n l:p 3,t=\, and 7 is of order 32 modulo 27;

(2) n 61 :p 3, t 2, and 61 is of order 34 modulo 243;

(3) n — 86\p 1
> t 1, and 2 is of order 3 • 72 modulo 343, 43 is of

order 72 modulo 343.

As expected, the hypothesis on the orders of the prime factors of n is not
113 + 1

satisfied in general. It fails for instance for p 11, t 1 : here n
4

333 32 • 37 and whereas 37 is of order 5 • ll2 modulo ll3, 3 is only of
order 5-11 modulo 113.
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However, failure of the hypothesis seems fairly rare: the next example with
t 1 occurs for p 3511. Note that 3511 is special for another reason: it
satisfies the congruence 2p~l 1 mod p2, the only other known solution
being the famous p 1093. Such prime numbers are known in the literature
as Wieferich prime numbers.

p2i+ 1
_j_ i

The behaviour of the orders of the prime factors of n — in
4

(Z/p2t+lZ)* is probably a difficult question.

Proof of the Theorem. The hypothesis on the orders q\,...,qr means
that m 1 + p(, which generates the subgroup of order pt+l in (Z/plt+lZ)*9
is contained in all the subgroups < f > < lr > of (Z/plt+lZ)*9 and thus
is a multiplier of any candidate difference set D C Z/p2t+xZ with the above

parameters.
What are the orbits of multiplication by m 1 + pl in the ring

Z/p2t+lZl If at i - pt+i, then a • m a mod p2t+l. Hence, there are pl
fixed points a0 0,au ...,^_1.

More generally, if au ipt~j+l with 1 ^ ^ pt - 1 and gcd(i,p) 1,

j 1, t + 1, then dij produces an orbit {aumv}v 0,...^-i of length pf
Here, we use the formula

(1 + pf)pS 1 + pt+s mod (/?'+5+1)

easily proved (for p odd) by induction on s, and which implies that m has
(multiplicative) order pj modulo pt+j.

The orbits Au of dtJ with ieZ/p'Z for j 0 ,ö a,), and
i e (Z/ptZ)* for j 1, t + 1 are easily verified to be disjoint. Together,
they sweep out

t+1

p'+ L (p-i)ppjp2i+i
j i

elements of the group Z/p2'+ 'Z. Hence, AtJ with for j 0
(ai,o ai)> sud ic(Z/p'Z)* for j=1,1 is the complete collection

of orbits under multiplication by m1 + in Z/p2,+ lZ. At this point,
it may be more convenient to write the group ring of Z/p2l + lZ as
Z[x]/(xp2,+'- 1). Identifying a subset C Z/p2t+lZ with the sum of the
corresponding elements %aeAa in the group ring, the orbits AUJ can then be
written as

pj - i
AiyJ £
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If a difference set D with the above parameters exists, it must be of the form

D= I xipt+l + £ £ ^ieS0 j I ieSj

where S0 C Z/plZ and »Sy C (Z/p(Z)* for y 1, t + 1. Now, let
n : Z[x]/(xp2t + l - 1) Z[y]/(yp - 1) be the projection of the group ring of
Z/p2t+lZ onto the group ring of the cyclic group of order p. We have

n(x) y and

nAij=Pi for y 0, 1,

nAitt+l pt+l • ^ for i e (Z/p'Z)*
It follows that

TiD — Sq ps\ + • • • + ptst + pt + l \ X y'( s
\ 'e +1

where Sj Card(Sy).
Let N s0 + psi + • • • + and a^ Card{/1 / e St+U i M< mod/?},

then

nD N + pt+l Yy

with Y= XI^ i av.yß- (Note that aQ is indeed 0 as St+i C (Z/ptZ)*.)
Therefore n(DD) n(D)n(D) has the form

p ~ 1

n(DD) - N2 +Np'+l£a»(y*
\l 1

On the other hand the condition for D being a difference set yields, after

applying tt,

p2,t+ l _j_ 1 pit + I — 3 lpZ_l
7i(DD) - + p2t Cr '

We will reach a contradiction by comparing the constant terms (coefficient
of 1 in Z[y]/(yp - 1)) in the two expressions for n(DD):

P ^ rj2t + \ I 1 n2/+ 1 — 3

N2 + p2<+2 £ a\
P

+ ——-—- p"
n 1

Note that k Card(£>) N + /?'+15v+1, where sv+i Card(S,+ 1), and
/72?+1 — 1

hence N= pt+lst+l. Substituting this in the above equation,
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we get

4s>+1 3pt~l(p - 1) mod pt+1

Writing 4sv+1 3pt~l(p - 1) + z ' Pt+l for z e Z, we observe that

p 3 mod 4 implies z 2 mod 4, and so 2pt+l <|z ' Pt+l |. But, st+1

Card(St+i) ^p'-^p - 1), since S,+ 1 C (Z/pfZ)*. It follows that

I z - pt+l\ ^ | 4sv+i - 3jp'~1(jp - 1) | ^3pt~1(p - 1) < 2pt+l < | z * pt+1 I.

We have reached the desired contradiction, i.e. no cyclic difference set
/ p2t+ 1 _ i p2t+l - 3 \

with parameters p2t+l, exists if the orders of the
\ 2 4

p2t + 1
_|_ J

prime factors of n in (Z/p2t+1Z)* are all divisible by pt+1.
• 4

(7) Parameters (u 399,k= 199, X 99), Table II. This is the last item in
Table II, corresponding to n k - X 100.

Since 4 22 58 mod 399, it follows that 4 must be a multiplier of any
abelian difference set D with the above parameters.

Writing Z/399Z as a direct product
Z/399Z Z/3Z x Z/7Z x Z/19Z

and accordingly writing the elements of Z/399Z as triples g (x,y,z),
x e Z/3Z, y e Z/7Z, z e Z/19Z, we have the following orbits of the multiplication

by 4 in Z/399Z: all monomials XYZ, with Ie{l,(/, Ü],
Y e {1, V, V}, Z e {1, W, Wj, where

1 {(0,0,0)}

U= {(1,0,0)}

V= {(0,1,0), (0, -3,0), (0,2,0)}
W={(0,0,1), (0,0,4), (0,0,-3), (0,0,7), (0,0,9), (0,0,-2),
(0,0,-8), (0,0,6), (0,0,5)}

and bar denotes the conjugate, i.e. if C then -g\g
All orbits, except I, U,Ü have cardinality divisible by 3. Since

A: 199 1 mod 3, any putative difference set D can be assumed to contain
a single one-point orbit 1, U or U.Multiplyingby or C7 if necessary, we
may assume that

D=\+A-V+B-V + P- W+Q-W,
where

A<x0 + aif/ + a2Ü, 0 ^ a, < 1

Bßo + ß,t/+ ß2C>, 0 < ß, ^ 1

and P, Q are polynomials in U, Ù and V,
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We first show that A and B must be 0. Let a a0 + oq + a2,
b ßo + ßi + ß2, and let n: Z/399Z -+ Z/7Z be the projection on the second

factor.
We indulge in various abuses of notation: we write iz for the group ring

projection as well and denote nV again by V. Note that nU nÜ 1,

nW nW 9. Then nD 1 + aV + bV mod 9, a congruence in the group
ring of Z/7Z.

Since DD 100 + 99 • (1 + U + Ü) (1 + V + V) (1 + W + W), the equation

expressing that D is a difference set with the required parameters, we have

DD 1 mod 9.

Consequently, using

VV=3+V+V, V2=V+2V, V2 2V+V,
we get, expanding n(DD) n(D)n(D), and after collecting terms,

3(a2 + b2) + (a + b + a2 + b2 + 3ab) (V + V) 0 mod 9

Thus, #2 -J- b2 0 mod 3, and this means a b 0 mod 3. But then
a2 + b2 + 3ab 0 mod 9, and so we must also have

a + b 0 mod 9

after looking at the coefficient of V + V in the above congruence.
Since 0^tf^3,0^&^3, this means a b 0 and therefore

A B 0. Any difference set D with parameters (399, 199, 99) can therefore
be assumed to have the form

D=\+P-W+Q'W.
Plugging D=\+P-W+Q'W into the equation

DD 100 + 99(1 + U+ Ü) (1 + V+ V) (1 + W+ W)

and using the multiplication table

WW= 9 + 4(W+ W) W2 4W+ 5W,
we get

1 + 9(PP + QQ) 100 + 99(1 + U+ Ü) (1 + V+V)
P + Q + 4(PP + QQ) + 5PQ + 4PQ 99(1 + U + Ü) (1 + V + V)

where

P p0 + px U + p2Ü + (p3 +p4U + p5Ü)V + (p6 + p-jU + p%Ü)V

Q Qo + q\U + q2Ü + (q3 + q4U + q5Ü)V + (q6 + q1U + qsÜ)V

with 0 < /?/, <7/ < 1, for / 0, 8.
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The first equation gives

pp + QQ ii + n(i + u+ Û) (l + v+ V).

Substituting in the second equation, we get

(*) p + q + 5pq + 4PQ - 44 + 55(1 + U + Ü) (1 + F + V)

Since UÜ =1, U2 Ü and FF 3 -F F + F, F2 F + 2F, the constant

terms in PQ and PQ are equal to + 3 c> say-

Hence, equating constant terms in the above equation (*), we must have

Po + Qo + 9c 11

The only solution to this equation with all pi9 qt being 0 or 1, is p0 qo 1,

p. - o for i 1, 8. This means P Q 1, contradicting (*).

5. Comments on the examples in Tables II

Difference sets with parameters (v,k,X) (4n - 1,2n - 1, n - 1) are

usually called Hadamard difference sets. Our purpose here is to discuss the

classification of these cyclic difference sets for 2 ^ n < 100.

In many cases where v An - 1 is a prime p, the quadratic residue

difference set, which we denote by QP(p) is unique for the given values of
the parameters. This is obviously the case if the multiplier m has order

1

k -(u — 1) in (Z/vZ)*. Indeed, in this case, there are exactly 3 orbits of

multiplication by m in Z/vZ, namely 1 ={0}, M {1, m, m2, mk~1}
and M { - 1, - m,..., - mk~1}. Thus the only choice for D is D M
or D M, which are isomorphic under conjugation o: Z/vZ Z/vZ,
g (a) - a.

In our Table II, this situation happens for n 3, 5, 6, 12, 15, 17, 18, 20,
21, 27, 33, 35, 41, 42, 45, 48, 53, 57, 60, 63, 66, 68, 77, 87, 90 and 96.

The remaining cases where v An - 1 is a prime p (for 2 ^ n < 100) have
been shown to lead to a single difference set, namely QP(p), by machine
enumeration of the various choices of D as a union of orbits under multiplication

by a multiplier m. This includes the cases n 26 (multiplier 8), n 38

(multiplier 19), n 50 (multiplier 5), n 78 (multiplier 13), n 83 (multiplier
83), and n 95 (multiplier 5). By far, the most difficult case (for the machine)
occurs with n 38, which required the examination of 37 442 160 combinations

of multiplier orbits.
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