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34 J. OPREA

In order to show the reverse inequality s ^ k, we must show that, for
p : AX - AX/A > kX, p* is injective. Plainly, by Poincaré duality, p* is

injective if and only if /?*(x) ^ 0. Hence, we prove this.
Suppose p*{t) 0. Let t denote the representing cocycle in A>kX of the

fundamental class t. Let p{i) — x e AX/A>kX and consider x as an element
in A^kX. Now, /7*(x) 0, so there exists a e AX/A>kX with da x.
Consider a e A^kX as well and note that p(da) da x. Therefore, in
AX

da x + O where O e A>kX

Similarly, of course, x x + Q for Q e A>kX and we obtain,

x x + Q <ia-<f> + Q

with Q-Oe A>kX. But this means x is cohomologous to Q - O e A>kX,
contradicting the definition of k.

§3. Nilmanifolds

A nilmanifold M is the quotient of a nilpotent Lie group by a discrete

cocompact subgroup n. The description below follows [7].

It is well known that Nis diffeomorphic to some R" and, therefore, Mis
a K(n, 1). Furthermore, this entails the fact that n is a finitely generated

torsionfree nilpotent group.
On the algebraic side, there is a refinement of the upper central series of n,

n D n2 2 n3 D • • • d nn 2 1

with each 7C//tc/+i Z whose length is invariant and is called the rank of
7i. So, for Ti above, rank(71) n.

This description implies that any u e n has a decomposition

u ux{1 — - uxnn, where < un > nn, • • • < ut) 7i//7C/+1. The set {wi • • • un}

is called a Malcev basis for 71. Using this basis the multiplication in 71 takes

the form

u*nu?1 uynwp .(*.»

where

P;(*, J') ^ + i/(x,, • • • x;_,, j)
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Example.N Un(R),the group of upper diagonal matrices with l's on

the diagonal; n Un(Z). A Malcev basis is given by {uu | 1 ^ i < j ^ n\

where I + and

P ij(x,y)Xfj + yij+ £
i < k < j

Consider the central extension nn -* n n. The cocycle for the extension is

t„: n x n -> Z. Of course n is also finitely generated torsionfree with refined

upper central series,

Tln 7Cn Un n

Hence, rank (71) n - 1 and

Pi(x, y) p/((xr, 0), (y, 0)) - Xi + yf + tz(xi • • • *f~ 1, yx, • • • y/_1)

for i < n. Clearly, then, we may iterate this process and decompose n as n

central extensions of the form

Z G G

with cocycles xz e H2(G; Z) (with untwisted coefficients since the extension is

central).

This desription allows a geometric formulation:

in G H\7t; Z) s H2(K(n, 1); Z) s [tf(Ä, 1), K(Z, 2)]

by the usual identification of cohomology groups with sets of homotopy classes

into K(Z,mYs. Now, K(Z, 2) CP(oo), the classifying space for principal
^-bundles, so xn induces a bundle over K(n, 1),

S1 -+ K{7i, 1)

1

AT(tc, 1) ^ CP(oo)

The total space of the bundle is clearly K(n, 1) since the ensuing short exact

sequence of fundamental groups is classified by xn.
Now, because we can iterate the algebraic decomposition of 71, we obtain

an iterated sequence of principal S ^bundles classifed by the tz :
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S1 -> M
I

K(n, 1)

S1 - M„_, CP(oo)

I

i
S' -> M, ^ CP(oo)

I
* ^ CP(oo)

We can assume (by finite dimensionality) that each x/ has image in a finite
CP(n), so thus may be approximated by a smooth map. Hence, each Mj is a

compact manifold with

dim(My) dim(My_i) + 1

Thus, dim(M) rank(71) n.

The decomposition of M Ä"(7t, 1) into a tower of principal S1-bundles

is, in fact, the Postnikov decomposition of M with k-invariants the x,-. By the

fundamental theorem of rational homotopy theory, the minimal model has the

form,

with dxi X/, where x, is a cocycle representing the class x, e H2(Mi-X \ Z).
Note that A(M) is an exterior algebra because all generators are in degree 1.

Therefore, since dim M n, the only possibility for a cocycle representing the

fundamental class is X\ 'm'Xn. Hence, e0(M) n and this immediately
implies,

Proof of Theorem 1. n eQ(M) ^ cat0(M) < cat (M) ^ dim M

Example. Consider the 3-dimensional Heisenberg group U3(R) and mod

out by f/3(Z). The resulting Mis a 3-manifold obtained as a principal bundle,

§4. Category of nilmanifolds

A(Af) (A(^!, • • • x„), d) deg(x,j 1

s1 -> Af-> r2
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