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34 J. OPREA

: In order to show the reverse inequality s < k, we must show that, for
p:AX > AX/A>*¥X, p* is injective. Plainly, by Poincaré duality, p* is
-injective if and only if p*(t) # 0. Hence, we prove this.

Suppose p*(t) = 0. Let T denote the representing cocycle in A >4X of the
' fundamental class 1. Let p(t) = T € AX/A>*X and consider T as an element
in A<tX. Now, p*(t) = 0, so there exists o € AX/A>*X with dao = 1.
Consider a € A<4X as well and note that p(da) = da = 7. Therefore, in
AX

dao =1+ ®, where ® e A>kX .
Similarly, of course, T = T + Q for Q € A>*X and we obtain,
T=1T+Q=da—-®+Q

with Q — ® € A>*X. But this means T is cohomologous to Q — ® € A>kX,
contradicting the definition of k. [

§3. NILMANIFOLDS

A nilmanifold M is the quotient of a nilpotent Lie group N by a discrete
cocompact subgroup ©. The description below follows [7].
It is well known that N is diffeomorphic to some R” and, therefore, M is
a K(m,1). Furthermore, this entails the fact that m is a finitely generated
torsionfree nilpotent group.
| On the algebraic side, there is a refinement of the upper central series of T,

M2M2M32 " 2N, 21

with each n;/m;,, = Z whose length is invariant and is called the rank of
1. So, for m above, rank(n) = n.

‘ This description implies that any we€emn has a decomposition
u=uy" - ur, where {u,) = n,, - {u;) = n;/m;,. The set {uy, - u,}
is called a Malcev basis for m. Using this basis the multiplication in 7 takes

' the form

u)lcl .. u)’;nu)l’l e ui’ln — unln(x,y) uﬁn(x’-}’)

where

P, y) =X+ yi + 0, Xim, V1, Vi) -
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Example. N = U,(R), the group of upper diagonal matrices with 1’s on
the diagonal; © = U,(Z). A Malcev basis is given by {uy; |11 < < j < n}
where Uj; = I+ €ij and

pii(x, y) = xij + yi + Y X -

i<k<j

Consider the central extension 1, = n — m. The cocycle for the extension is
1,: T X Tt = Z. Of course T is also finitely generated torsionfree with refined
upper central series,

- L Tt Ty—1 Ut
T = — e D

|
|

V)

U

Hence, rank(n) = n — 1 and

pix, ) = pi{(%,0), (,0) = x; +yi + Ti(X1, " Xic1, V1, " Vie1)

for i < n. Clearly, then, we may iterate this process and decompose 7 as n
central extensions of the form

Z-G—G

with cocycles 1, € H 2((_Fr; Z) (with untwisted coefficients since the extension is
central).

This desription allows a geometric formulation:

1, € HX(n; Z) = H*(K(n, 1); Z) = [K(w, 1), K(Z, 2)]

by the usual identification of cohomology groups with sets of homotopy classes
into K(Z, m)’s. Now, K(Z,2) = CP(), the classifying space for principal
Sl-bundles, so 1, induces a bundle over K(m, 1),

St - K(m,1)
l

K@@, 1) 3 CP(w).

The total space of the bundle is clearly K(m, 1) since the ensuing short exact
sequence of fundamental groups is classified by 1,.

Now, because we can iterate the algebraic decomposition of n, we obtain
an iterated sequence of principal S!'-bundles classifed by the 7;:
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2
l
<
I

K(m, 1)

Sl - Mn—l - CP(OO)

Sl - M1 - CP(OO)

* 3 CP(w).

We can assume (by finite dimensionality) that each t; has image in a finite
CP(n), so thus may be approximated by a smooth map. Hence, each M, is a
compact manifold with

dim(M;) = dim(M;_,) + 1.
- Thus, dim(M) = rank(w) = n.

§4. CATEGORY OF NILMANIFOLDS

The decomposition of M = K(m, 1) into a tower of principal S!-bundles
is, in fact, the Postnikov decomposition of M with k-invariants the t;. By the
fundamental theorem of rational homotopy theory, the minimal model has the
form,

AM) = (A(xy, " " X,),d),  deg(x) =1

with dx; = t;, where 1; is a cocycle representing the class t; € H*(M;_,; Z).
Note that A(M) is an exterior algebra because all generators are in degree 1.
Therefore, since dim M = n, the only possibility for a cocycle representing the
fundamental class is x; - x,. Hence, e,(M) = n and this immediately
implies,

Proof of Theorem 1. n = ey)(M) < cato(M) < cat(M) < dimM = n. [

‘ Example. Consider the 3-dimensional Heisenberg group U;(R) and mod
out by Us;(Z). The resulting M is a 3-manifold obtained as a principal bundle,

St > M- T?
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