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In the fourth column of Table II, we have indicated the known existing
cyclic difference sets or the relevant prime power exhibiting non-existence by
the semi-primitivity theorem of Section 1. The values of the parameter # left
out by these two classes are n = 7, 25, 28, 37, 43, 44, 49, 52, 61, 67, 72, 75,
76, 86, 97, 99 and 100. We have reached a non-existence conclusion in these
cases by using the multiplier theorem of Section 1. The required calculations
being quite lengthy, it is impossible to expose them all. Instead, Section 4
contains some typical examples of application of this theorem.

3. BARKER SEQUENCES

Recall that a Barker sequence is a binary sequence A = (a, ..., a;) such
that the aperiodic correlations c¢; (4) = Z:’l a;a;.; belong to {—1,0,1}
forallj=1,...,1 - 1.

The set of Barker sequences of a given length is preserved by the following
transformations:

A= aA, where (nd);, = — g
A BA, where (BA); = (- 1)ia;

A vA, where (YyA), =a;_;,q,

with / = length(A).

The group of transformations of Barker sequences generated by o, B and
Y is the elementary abelian 2-group Z/2Z x Z/2Z x Z./2Z of rank 3 if / is odd,
and is the non-abelian dihedral 2-group of order 8 with presentation

Dy=<a,B,y: 02 =B2=y2=1, af = Ba, ay = ya, yBy = ap >
for / even. Note that in this case, Dy is also generated by p = By and y with
presentation

Dy = <p,y:p*=vy2=1l,ypy=p-1> .

Case of odd length. The complete list of Barker sequences of odd length was
established by R. Turyn and J. Storer, [ST] and reads as follows (in

lengths > 3):
(17 1, - 1)

1,1,1, — 1, 1)
1,1,1, -1, - 1,1, - 1)
a,1,1,-1,-1,-1,1, -1, - 1,1, - 1)
1,1,1,1,1, -1, -1,1,1, = 1,1, -1, 1) .
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The list is complete up to the transformations o, p and y given above. The orbit
of each Barker sequence in the above Turyn-Storer list under this transforma-
tion group consists of 4 sequences.

Case of even length. The situation here is completely different. The only
known examples are

(I,1) and (,1,1, -1),

again up to modifications by the above transformations a, p and y. Note that
the sequence (1, 1, 1, — 1) gives rise to 8 sequences under this transformation
group.

It is widely believed that these are the only Barker sequences of even length.
We will show that this is true up to length 1 898 884.

We know from Section 1 that a Barker sequence of even length (> 4) is
also a periodic Barker sequence with correlation y = 0, and we know from
Section 2 that the length / must be of the form / = 4N? with N odd, if [ > 4.
We also know from Section 2 that if N is an odd integer with a prime factor
p such that p is self-conjugate modulo A, then there is no (periodic) Barker
sequence of length 4N?2. In other words, N is excluded if, for p as above,
there is some positive integer f such that p/ = — 1 mod N’, where N’ is the
largest divisor of N which is relatively prime to p. An immediate consequence
is that N cannot be a prime or a prime power. R. Turyn used the above theorem
to show that, if there exists a (periodic) Barker sequence of length / = 4N?
with &V > 1, then necessarily N > 55. With the following result of [EKS], this
bound can be improved to N > 689, but only for true (i.e. aperiodic) Barker
sequences.

THEOREM. Let | be an even integer having a prime factor p =3
mod 4. Then there is no Barker sequence of length .

For the proof, we will need the following

LEMMA. Let f(z),g8() € F,l[z, 2 '] be non-zero elements satisfying

f@ ") +gkek")=0.
Then either p=2 or p=1 mod 4.

Proof. Since F,[z,z-!'] is a unique factorization domain, we may
suppose that f(z), g(z) are coprime, by clearing any common factor. But then,
the equation implies that f(z) divides g(z~'). We may thus write

gz N =h@f), gk =hz"fiz"hH

q
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for some A(z) € F,[z, z ~!]. Substituting these expressions for g(z) and g(z~ 1)
and clearing the common factor f(z)f(z~!) in the resulting equation,
we obtain

1+ h@h(iz)=0.

Letting z = 1, this gives — 1 = A(1)2 in F,, and therefore p is not congruent
to 3 mod 4. [

Proof of the Theorem. Let A = (ay,...,a;) be a Barker sequence of
even length /, and consider the two polynomials

l /
F) = Y azi"! and GR =F(-2)= ) (-1ilazi-'.

i=1 i=1
CLAIM: Then, (F,G) is a Golay pair, i.e.
FRFz )+ GRGErYH =21 inZzz"].

Indeed, the constant term of F(z)F(z~!) + G(z)G(z~') is equal to
2 Y a? = 21. On the other hand, for j > 0, the coefficient of z/ + z~/ in
FRF(z ') + GGz is equal to

[—J
.El (@iaiv; + (- aiaiy) ,
which is zero if j is odd, and is equal to 2c;(A) if j is even. But c;(4) = 0
if j is even and positive, since c;(A4) belongs to { — 1,0, 1} by hypothesis, and
c;=j mod 2. Therefore, F(2)F(z~!) + G(z)G(z~ ') = 2/ in Z[z,z7'], as
claimed.

Reducing the above equation modulo p, we obtain two non-zero elements
f(2), g(2) in F,[z, z 1] satisfying

f@f@iz ') +gez)=0.

By the lemma above, we conclude that p cannot be congruent to 3 mod 4. [

APPLICATION. There is no Barker sequence of length | = 4N?, if

1 < N < 689. Inparticular, there is no Barker sequence of even length greater
than 4 and less than 1 898 884.

Of course, it suffices to consider only those N < 689 which are odd, are
not a prime or a prime power, and have no factor congruent to 3 mod 4. Since

the square root of 689 is smaller than 26, every such N must have a prime
factor equal to 5, 13 or 17.
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The remaining candidates are listed below, together with an indication in
parenthesis showing that each one (except 505) is excluded by Theorem 2 in
Section 2: if N has a prime factor p such that p/ = — 1 mod N’, where N’
is the largest divisor of N relatively prime to p, then there is no (periodic)
Barker sequence of length 4N2.

REMAINING CANDIDATES (excluded by Theorem 2, except N = 505.)

N N

65=5-13 (52 = — 1 mod 13) 425 = 52-17 (58 = — 1 mod 17)
85=5-17  (17*= —1mod5) 445 = 5 - 89 (89 = — 1 mod 5)
145 =5-29 29 = — 1mod)5) 481 = 13 - 37 (37% = — 1 mod 13)
185 =5 - 37 (37?2 = — 1 mod 5) 485 = 5-97 (972 = — 1 mod 5)
205 = 5 - 41 (59 = — 1mod4l1) 493 = 17 - 29 (172 = — 1 mod 29)
221 =13 - 17 (132 = — 1mod 17) 505 =5-101
265=5-53  (532= —1mod>5) 533 = 13-43 (433 = — 1 mod 13)
305 = 5 - 61 (515 = — 1 mod 61) 545=5-109 (109 = — 1 mod 5)
325 =5%2-13 (52 = — 1mod 13) 565 =5-113 (1132 = —1mod5)
365=5-73  (732= —1mod5) 629 =17-37 (378 = —1mod17)
377 =13-29 (137 = — 1 mod 29) 685 =5-137 (1372 = — 1 mod5)

The case N = 505 = 5 - 101 cannot be excluded by Theorem 2, because
101 = 1 mod 5 and 5% = 1 mod 101. However, 505 can still be excluded by
Turyn’s Inequality, as observed in [JL]: choosing p = 101 and w = 2 - 1012,
so that p is trivially semi-primitive modulo w, we would have

p< L 252250,
w
a contradiction to the assumed existence of a Barker sequence of length
4 - 5052,

The first open case is thus N = 689 = 13 - 53. We have 53 = 1 mod 13 and
1313 = 1 mod 53, so that neither 53 is semi-primitive mod 13, nor 13 is semi-
primitive mod 53. The next open case is N = 793 = 13 - 61.

4. THE USE OF THE MULTIPLIER THEOREM

In this section we give the details of some (typical) non-existence proofs
needed to establish the tables, using the multiplier theorem.

Recall that if D is a cyclic difference set with parameters (v, k, ), and if
n = k — A is greater than A, then the group of multipliers of D contains the
intersection M in (Z/vZ)* of the subgroups generated by /, ..., [,, where
li, ..., [, are the prime factors of n.
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