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Definition. Let G be a finite abelian group and D a difference set on G.
The integer m is a multiplier for D if m is prime to v = | G |, and if the isomor-
phism m: G — G induced by multiplication by m, permutes the translates
a+ D (aeG) of D.

Thus, m is a multiplier if (m,v) = 1, and if m - D = a + D for some
aeq.

We will also need the following result:

PROPOSITION. Let m be a multiplier of a difference set D in an
abelian group G. Then some translate D' =a+ D (aeG) of D, is
fixed under multiplication by m, ie. m- D" = D".

This follows at once from a more general result, stating that an auto-
morphism of a symmetric block design fixes as many points as blocks. (See
[L], Theorem 3.1, page 78.) In our context, the multiplication by m in G
fixes 0, hence it must fix at least one translate of D.

As a consequence, if an abelian difference set D admits a multiplier m, we
may very well suppose that D is fixed under multiplication by #, and thus,
that D is a union of orbits under multiplication by m.

The multiplier theorem below tells us how to find multipliers of abelian
difference sets.

MULTIPLIER THEOREM. Let D be a (v,k,\) difference set in an
abelian group G. Let ny be a divisor of n =k — A such that n; > \.
Suppose m is an integer satisfying

(1) ged(m,v) = 1;

(2) for every prime divisor p of n,, m is a power of p modulo
the exponent e of G.

Then, m is a multiplier of the difference set D.

In Section 4, we will use this theorem to exclude the existence of periodic
Barker sequences of various lengths.

2. PERIODIC BARKER SEQUENCES

This section deals with periodic Barker sequences, i.e. binary sequences
whose periodic correlations v; are constant and equal to y € {0, 1, — 1}.

Case y = 0. In this case, the parameters (v,k,A) and n = k — A of the
associated cyclic difference set (see Section 1) satisfy:

n=N?, 0v=4N?, k=2N2 - N, A=N2-N.
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These follow respectively from Schiitzenberger’s theorem for v even, the
relations v — 4n = vy, k(k—1) = A(v — 1), and our assumption k < v/2.

We will now prove a theorem of R. Turyn [T1], stating that N must
necessarily be odd. (See also [Bau].)

THEOREM 1. Let D be a cyclic difference set with parameters
vV=4N?, k =2N? — N and L =N?—- N. Then N is odd.

For the proof, we will need the following two lemmas.

LEMMA 1. Let m =mn, be a primitive 2’-th root of unity (r>0).
Let © € Z[n] satisfy

00 = 0 mod(2)>, (s> 0)
where — denotes complex conjugation. Then
6 =0 mod(2)*.

Proof. 1In Z[n], the ideal (2) is a power of the prime ideal P = (1 —n),
and clearly P = P. We have (2) = P*, say.

Suppose 6 € P™ where m is maximal. Then 00 € P27, and 2m is also F
maximal. But 00 € (2)% = P2, which implies 2m > 2sk, i.e. m > sk, and
hence 0 € (2)¢, as claimed. [

On the level of group rings, there is a similar result, albeit necessarily
weaker. For i > 0, we will use the following notation:

(1) m;is a primitive 2¢-th root of unity;

(2) T is the multiplicative cyclic group of order 2/ with generator x;;
(3) p:ZI';— Z[n;] is the map induced by p(x;) = n;;

(4) v;:ZI';— ZI';_; is the map induced by v;(x;) = x;-; (J <i).

LEMMA 2. Let 0 € Z[n,] (r>0) satisfy
00 =0 mod(2)*, ((0<s<7)
and let o € ZI', be any element such that p(a) = 0. Then
vs(a) = 0 mod (2)¢
in ZI',_; .
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Proof. By induction on s.

(1) Case s = 1. Let us write a as

2r—1

o= Y X .
i=0
Then
F=l. _
0= p(a) = Z (0 — Qig2r-1)T, 5
i=0
since 12" = — 1. Furthermore, the powers 1, with 0 < k < 27-1 — 1 form

a Z-basis of Z[n,]. By Lemma 1, we have 6 = 0 mod (2), and therefore
(*) 0; = O;42—-1 mod (2)

foralli=0,..,2"" ' — 1.
On the other hand,

2l

vi() = Y (0 + Girar-1)Xp_q s
i=0

and (*) implies that v;(a) = 0 mod (2) in ZI',_,, as claimed.

(2) Case s> 1. By (1) above, we have v;(a) =0 mod (2) in ZI',_;.
Thus we have v,(a) = 2B in ZI',_;. Now p(B) = 5 p(a), so that

p(B)p(B) =0 mod (2)%~V

in Z[n,_,]. By the induction hypothesis, we have v,_;(B) = 0 mod (2)*~! in
ZT, ., and therefore vy(a) = 0 mod (2)s in ZI',_,. [

Proof of the Theorem. Let D C Z/vZ = C, denote a difference set with
parameters (U, k,\A) = (4N?,2N? — N,N? — N). Identifying ZC, with
Z[x]/(x* — 1), we will denote by 6 (x) the element 0(x) = Z sepX? € LC,. We
have by hypothesis,

(1) 00)0(x~) = N2+ A1 +x+ - +x"1).

Given any element z in some ring 4, we will denote by 6(z) the image of
0(x) under the map ¢: ZC, > A induced by x— z.
Let us write N = 2N, with N; odd. Thus, w = 22/+2 is the highest power

| of 2 dividing v = 4N?2. Let I'; denote, as above, the cyclic group of order 2!
with generator Xx;.
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If n is a primitive 22/+2-th root of unity, we have 6(m) - 06(m) = N? =0
mod (2)2. Hence, Lemma 2 implies 0(x;,,) = 0 mod (2)! in ZT,, ,. Denoting
X:+2 by ¥, we thus have

0(y) = 20,(»),

for some 0,(y) € ZI';, 5.
Now, a direct computation yields

0.0 =N+ Ni(N=1) (1 +y+ -+ +y22-1),

so that the constant term (i.e., the coefficient of 1 = %) of 6,(»)6,(») is
equal to N2 + N;(N — 1). On the other hand, write 6,(y) as

¥ g
0,(») = igo diy’
in ZI,,,. In this notation, the constant term of 6;(»)6,(y) is equal to
Y. d?, so that
NI+ NI(N-1) = Y d;.
Now, ), d; = (), d)* mod 2, and
(Y d)2=0,(1)2 = N2 + NX(N - 1)2:+2,
Thus,
NI+ NX(N-1) =N+ NX(IN-1)2/*2 mod 2,

which implies N = 1 mod 2, as claimed. [

Another very strong restriction on the parameter N is provided by the
following easy consequence of Turyn’s Inequality, Section 1.

THEOREM 2. Let N be an odd integer. If N has a prime factor p
which is self-conjugate modulo N, then there is no periodic Barker sequence
of length | = 4N?2.

Recall that, by definition, p is self-conjugate modulo N if and only if there
is a positive integer f such that p/ = — 1 mod N’, where N’ is the largest
divisor of N which is relatively prime to p.

Proof. 1In the notation of Turyn’s Inequality, take v = 4N? of course,
m=p, and w = v/2 = 2N?. Thus v/w = 2 and r, the number of distinct
prime factors of ged(m,w) = p is equal to 1 here.
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Let now N’ denote the largest divisor of N which is relatively prime to p.
By hypothesis, there is a positive integer f such that p/ = — 1 mod N’. Since
N’ and p are odd, we also have p¥'/ = — 1 mod 2N"2. Therefore p is self-
conjugate modulo 2N2 = w, because 2N’2 is the largest divisor of 2N? which
is relatively prime to p. If a periodic Barker sequence of length 4N? existed,
Turyn’s Inequality would then imply

p=m<2 - Wvw/w=2,

contrary to the fact that p divides N. [

An immediate corollary is that N cannot be a prime or a prime power.
R. Turyn used his inequality to show that there exists no periodic Barker
sequence of length / = 4N? with 1 < N < 55. (The case N = 39 required a
special argument.) See [T2].

As an example, suppose that N = p* - g*, where both p, g are prime and
= 3 mod 4. The hypothesis of Theorem 2 is then satisfied, i.e. either p or ¢
is self-conjugate modulo N.

qg -1
This follows from quadratic reciprocity, which implies that either p 2
p—-1
= —1lmodg,orqg 2 = -1 mod p.

More generally, suppose that N = p* - g* - N;, where p, g are as above,
and where N, is coprime to p, g, and satisfies furthermore Nf < min(p, q).
Then there are no periodic Barker sequences of length 4N2. This follows
from Turyn’s Inequality, by choosing w = 4p?*q?, and m = p or gq,
according as to wether p is self-conjugate modulo g, or g is self-conjugate
modulo p.

(As observed by J. Jedwab, it even suffices to have N2 < min (p*, ¢*),
taking m = p* or g*, as the case may be.)

Case y = 1. In this case, the parameters (v,k,A) and n = k — A satisfy

v =2t(t+1)+ 1
k=1?

1
A=—-t(t-1
2( )

1
and n =£t(t+ 1),
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for some positive integer ¢. Indeed, v = 4n + 1 (since v — y = 4n for a periodic
Barker sequence with correlation y), and the symmetric block design relation
k(k—1) =A@ —1) yields kK = (k—2)X)2. Setting t = k — 2A, we find the
parametrization above. Since the parameter values are the same for — ¢ and
t—1, we may assume ¢ > 1. (Recall also our convention k£ < %u.) Observe
that the Chowla-Ryser condition is here always satisfied: the triple
X=1,Y=1 and Z =t is a nontrivial integral solution to the equation

nX? + (— 1)E (U_l)kYz = Z2?. The case t = 1 is trivial: A = 0. It does however
correspond to the Barker sequence 1,1,1, —1,1. For # = 2, we have the
parameter values (13,4, 1) and the essentially unique cyclic difference set

D=1{0,1,3,9}.

More geometrically, we can describe this difference set using the projective
plane P2(F;) over the field F; with 3 elements which possesses an automor-
phism, the Singer automorphism of order 13. Viewing E = P2(F;) as a G-set
with G cyclic of order 13, the difference set D C E is then given by any line
P!(F;) C P2(F;). The Singer automorphism is best described by taking the
orbits of the F¥-action on F,;. The map S:P2%(F;) > P2(F;) then corres-
ponds to the multiplication by a generator a of the cyclic group F¥ . (See [L],
page 125.)

We will prove that there is no other cyclic difference set with parameters

1
(Zt(t + 1), tz’i 1t — 1)) for t < 100, except perhaps for ¢ = 50, where the

existence of a cyclic difference set with parameters (5101, 2500, 1225) still
remains unsettled. We only know that 191 is a multiplier if such a difference
set exists.

These non-existence claims are obtained by using the semi-primitivity and
multiplier theorems of Section 1. Table I at the end of the paper indicates in
each case which of these two results was used. When relevant, the semi-
primitivity theorem is very easy to use. In our case, where the parameters are

1
of the form (v,k,\) = (Zt(t + 1)+ 1, tz,z 1t — 1)) , there is one further

simplification; the semi-primitivity theorem implies the non-existence of a
cyclic difference set with n even, in the following two instances:

(1) v=2t(t+ 1)+ 1is a prime power

1
2 n=k—-A= > t(t — 1) is square-free.
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(Unfortunately, this simplified criterion does not apply for odd.) Indeed,
since v = 4n + 1, we have

4dn= -1 modv,

so that one of the primes dividing 47 must be of even order in the group of
units (Z/vZ)*.

If n is even, then 4n and n are divisible by the same primes and one of
the primes dividing » must be of even order modulo v. Let p, say, be a prime
divisor of n and let 2f be its order in (Z/vZ)*.

If v is a prime power, the group (Z/vZ)* is cyclic (yes, v is odd) and
p/ = — 1 mod v. The semi-primitivity theorem applies. If v is not a prime
power, there is a prime power divisor w of v such that p is of even order, 2 f’
say, in (Z/wZ)*. Again, (Z/wZ)* being cyclic, this implies p/" = — 1 mod w,
and the semi-primitivity theorem applies. In the range 3 < ¢ < 100, the semi-
primitivity theorem takes care of all the cases, except the values ¢ = 9, 49, 50
and 82. (See Table I.)

In contrast, applying the multiplier theorem may require quite lengthy com-
putations on the structure of multiplier orbits. The cases t = 9, ¢ = 82 (easy)
and ¢ = 49 (harder) are treated in Section 4 using the multiplier theorem.

Case vy = — 1. The symmetric block design equation k(k—1) = A(v — 1) in
this case yields the parameter values (v, k,A) = dn—1,2n -1, n — 1), where
n = k — A as usual. Recall that we are assuming k& < % v, without loss of
generality.

1
-@-1)

Again the Chowla-Ryser equation nX? + (— 1)2 AY?2 = Z2? is non-
trivially solvable in integers: X =1, Y =1, Z = 1.
However, here the situation is quite different from the one in case y = 1.

There are well known families of cyclic difference sets with parameters of the
form 4n—1,2n—1,n-1).

(1) Quadratic residues.

Suppose v = 4n — 1 = pis a prime. Let D C Z/pZ be the set of non-zero
quadratic residues mod p. Then,

1
k=|D|= 5(p—1)=2n—1

and D is a difference set with A = (p — 3)/4 = n — 1. We shall denote this
difference set by QR(p).
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(2) Projective spaces.

Let E = P4(F,) be the projective d-space over the field with two elements
F,. Of course, | E|=29+! — 1. The hyperplanes in E form a symmetric
block design with parameters

Q4+1—-1,29—-1,24-1-1).
The Singer automorphism exhibits this design as a cyclic design on the cyclic

group of order v = 29+1 — 1. We use P4(F,) as a notation for this cyclic
difference set.

(3) Gordon-Mills-Welch difference sets.

Other difference sets with the same parameters as projective spaces have

been discovered by B. Gordon, W. H. Mills and L. R. Welch. (See [GMW].)
They appear in Table II under the label GMW. We give some details of their
construction in Section 5.

(4) Twin primes cyclic difference sets.

If p and g are twin primes, ¢ = p + 2, there is a difference set on
1 1
1Z/pgZ = 1Z/pZ x Z/qZ with parameters (pq, E(pq — 1),Z(pq — 3)) and

which we shall denote by TP(p, q).
The set D C Z/pZ X Z/qZ is defined by

D = (Z/pZ x {0}) U (S, X S;) U (N, X N,) ,

where S, and N, denote the (non-zero) squares and non-squares mod p
respectively, and similarly for S, and N,.

(5) Marshall Hall cyclic difference sets.

If v is a prime number of the form v = 4x2? + 27 where x is an integer,

v—1 v—-3
there is a cyclic difference set with parameters (u, 5 ' 4 ) [H],

page 170. We will denote this difference set by MH (v). In Table II, they occur
for the values n = 56 and n = 71 of the parameter n.

In Table II, we settle the existence question for a cyclic difference set with
parameters (4n—1,2n—1,n—1) for n = 2, ..., 100.

It turns out that the cyclic difference sets with parameters (7, 3, 1) provided
by P2(F;) and QR (7) are isomorphic. In the two other cases of Table II where
4n — 1 is a prime p of the form p = 29 — 1 (that is, n = 8 and 32), P¢~1(F,)
and QR (p) are non-isomorphic difference sets. (According to [BF], there
actually are 6 distinct examples for n = 32.)
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In the fourth column of Table II, we have indicated the known existing
cyclic difference sets or the relevant prime power exhibiting non-existence by
the semi-primitivity theorem of Section 1. The values of the parameter # left
out by these two classes are n = 7, 25, 28, 37, 43, 44, 49, 52, 61, 67, 72, 75,
76, 86, 97, 99 and 100. We have reached a non-existence conclusion in these
cases by using the multiplier theorem of Section 1. The required calculations
being quite lengthy, it is impossible to expose them all. Instead, Section 4
contains some typical examples of application of this theorem.

3. BARKER SEQUENCES

Recall that a Barker sequence is a binary sequence A = (a, ..., a;) such
that the aperiodic correlations c¢; (4) = Z:’l a;a;.; belong to {—1,0,1}
forallj=1,...,1 - 1.

The set of Barker sequences of a given length is preserved by the following
transformations:

A= aA, where (nd);, = — g
A BA, where (BA); = (- 1)ia;

A vA, where (YyA), =a;_;,q,

with / = length(A).

The group of transformations of Barker sequences generated by o, B and
Y is the elementary abelian 2-group Z/2Z x Z/2Z x Z./2Z of rank 3 if / is odd,
and is the non-abelian dihedral 2-group of order 8 with presentation

Dy=<a,B,y: 02 =B2=y2=1, af = Ba, ay = ya, yBy = ap >
for / even. Note that in this case, Dy is also generated by p = By and y with
presentation

Dy = <p,y:p*=vy2=1l,ypy=p-1> .

Case of odd length. The complete list of Barker sequences of odd length was
established by R. Turyn and J. Storer, [ST] and reads as follows (in

lengths > 3):
(17 1, - 1)

1,1,1, — 1, 1)
1,1,1, -1, - 1,1, - 1)
a,1,1,-1,-1,-1,1, -1, - 1,1, - 1)
1,1,1,1,1, -1, -1,1,1, = 1,1, -1, 1) .
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