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Finally, in Section 4 and 5, we give several examples of the use of the
Multiplier Theorem.

0. PRELIMINARIES

In this section, we establish the simple relationship between periodic and
aperiodic correlation coefficients, and show that every Barker sequence of
length greater than 2 is also a periodic Barker sequence.

LEMMA. Let A = (ay,...,a;) be a binary sequence. Then
Yi(A) = ¢;(4) + ¢, j(A)
forall j=1,...,1—1.
Proof. We have

l—j /

aiqi.; = Z a;q;.; + E aa; . j
i=1 i=l—j+1

Y;i(A) =

i

npq\

1

/
= ¢;(A) + E Qirj_1a; = cj(A) + ¢-j(A),

i=0l—-j+1

as claimed. [

For the next result, we will use, as other papers on binary sequences do,
the simple observation that

ab=a+ b -1 mod 4
foralla,be{+1, —1}.

PROPOSITION 2. Let A = (ay,...,a;) be a Barker sequence, with
[ >3. Then A is also a periodic Barker sequence.

Proof. We have to prove that y; = y j(A) is independent of j =1, ...,
[ — 1, and equal to 0 or + 1. First of all, we have (with ¢; = c;(A4))

(1) ¢ = 0 ?f [ — jis even
+1 if [/-jisodd
forall j=1,...,/] — 1.
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This follows from the obvious congruence ¢; = / — j mod 2, and the fact
that c; e {—- 1,0, + 1}, forall j=1,...,1 — 1.

Now, applying the relation ab =a + b — 1 mod 4 forany a, b = + 1, we
have

1 I-j
(2) c;j= Y aiai ;= Y, (a+a.;)— (I—j) mod 4

i=1 i=1
forj=1,...,1—-1.
Comparing the above congruences for two successive values of j, we obtain
(3) cj—cj+1-3a,_j+aj+1—-1 m0d4,

forj=1,...,1—2.
Changing j to / — j — 1 leaves the right-hand-side unchanged. Therefore,
we have

(4) Ci—Civ1=ECi—j1 — Ci—j m0d4,
forj=1,...,] — 2. Since|c; — ¢;, | < 1 for all j by (1), we have in fact an
equality:

Ci —Civ1 =Ci—j—1 — Ci—;

for j=1,...,] — 2. Using Lemma 1, it follows that

Y= Yj+1

for all j =1, ...,/ — 2, and thus vy, is independent of j, as claimed.

Now |y;|=]|c;+¢,_;|<2, and equality can occur only if ¢; = ¢;_;
= + 1, which by (1) implies in particular that j must be odd. But this is
impossible, because 7y, is independent of j. Therefore |y;|< 1, as
claimed. [

1. DIFFERENCE SETS

In this section, we show that the notion of a binary sequence with constant
periodic correlations is equivalent to that of a difference set on a cyclic group.
We then recall basic results concerning these difference sets.

Definition. A difference set D on a group G is a subset D C G such that
the cardinality of the intersection

Dng-D
is independent of g for g € G\{e}. Here, gD = {gx | x € D} is the translate
of D by the element g € G, and e is the neutral element of G.

A\
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