Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 38 (1992)

Heft: 3-4: L'ENSEIGNEMENT MATHEMATIQUE
Artikel: BARKER SEQUENCES AND DIFFERENCE SETS
Autor: Eliahou, Shalom / Kervaire, Michel

DOl: https://doi.org/10.5169/seals-59496

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.10.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-59496
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique, t. 38 (1992), p. 345-382

BARKER SEQUENCES AND DIFFERENCE SETS

by Shalom ELIAHOU and Michel KERVAIRE

INTRODUCTION

This paper deals with binary sequences A = (ai, ..., @), i.e. ;= + 1 for
i=1,...,1, and classical coefficients associated with them, the aperiodic and
periodic correlation coefficients. The aperiodic correlation coefficients of A
are defined as

1=

c(A) =), @a;, for j=1,.,1-1,

=1

and the periodic correlation coefficients of A as

/
'YJ(A) = E aid;. j, for _] = 1, ...,l— 1 ,
i=1
where the indices are read modulo /, i.e. a, = a,_;if r > 1+ 1.
It is well-known that vy, =¢; + ¢;_;for j =1, ..., — 1.
There are many interesting and difficult problems concerned with the
existence of binary sequences whose correlation coefficients (or correlations,

for short) are subject to various conditions. We will examine here three
classical situations.

(1) One may require the periodic correlations y; to be constant, i.e.
Yi=Y2= ... =Y1-1=Y.

We will see below that binary sequences satisfying this condition are
equivalent to the classical notion of cyclic difference sets.

(2) In addition to the condition above, one may furthermore impose the
constant y to be small, i.e. y =0, or y =1, or y = — 1. We will call such

The authors gratefully acknowledge partial support from the Fonds National Suisse de
la Recherche Scientifique during the preparation of this paper.



346 S. ELIAHOU AND M. KERVAIRE

sequences periodic Barker sequences. Periodic Barker sequences with y = 0 are
equivalent to circulant Hadamard matrices. We will not follow the link with
Hadamard matrices any further here.

(3) Without any condition on the periodic correlations, one may require
the aperiodic correlations to be small, i.e.

c;e{0,1, -1} for j=1,...,/-1.

Such sequences are known as Barker sequences. They were invented by Barker
[Bar] in connection with radar theory. Note that we cannot impose the c; to
be constant, since ¢; =/ — j mod 2.

Barker sequences of odd length have been classified in 1961 by Storer and
Turyn [ST]. Their lengths are bounded by 13. In the even length case, a
longstanding conjecture states that the only such sequences are of length 2 or
4. It is known since Turyn [T2] that if the length of a Barker sequence is even
and greater than 4, then it must be at least 12 100. We will show in Section 3
that this lower bound can be improved to 1898 884, thanks to a recent result
on Golay pairs and Barker sequences [EKS], and an observation in [JL].

Here is a summary of the content of this paper. In Section 0, we prove
that Barker sequences of length greater than 2 are in fact periodic Barker
sequences (i.e., (3) = (2)), an elementary and well known fact. It is sometimes
asserted in the literature that the converse holds as well. This is not true, and
clarifying the situation was one of our motivations to write this survey.
Another motivation was our exploration of the existence question of periodic
Barker sequences for an extensive range of possible lengths. This work is
summarized in Tables I and II at the end of the paper.

In Section 1, we show that binary sequences with constant periodic correla-
tions (condition (1)) are equivalent to cyclic difference sets. We then recall the
main results concerning these difference sets.

Section 2 deals with condition (2), that is, periodic Barker sequences. We
examine the cases y = 0, 1 and — 1 separately. In the case y = 0, it is widely
believed that the only possible length is / = 4. We recall a theorem of Turyn
stating that / must be of the form /= 4N?, where N is an odd integer.
Further results of Turyn imply that N must necessarily be greater than or equal
to 55. In the case y = 1, there is only one known example. The case y = — 1,
in contrast, provides many interesting classical examples. In that case we make
explicit the complete classification of (4n — 1,2n — 1, n — 1) cyclic difference
sets up to n = 100. (See Sections 4 and 5, and Tables I and II.)

In Section 3, we show that there exists no aperiodic Barker sequence of
length divisible by 2p, when p is a prime number congruent to 3 mod 4.
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Finally, in Section 4 and 5, we give several examples of the use of the
Multiplier Theorem.

0. PRELIMINARIES

In this section, we establish the simple relationship between periodic and
aperiodic correlation coefficients, and show that every Barker sequence of
length greater than 2 is also a periodic Barker sequence.

LEMMA. Let A = (ay,...,a;) be a binary sequence. Then
Yi(A) = ¢;(4) + ¢, j(A)
forall j=1,...,1—1.
Proof. We have

l—j /

aiqi.; = Z a;q;.; + E aa; . j
i=1 i=l—j+1

Y;i(A) =

i

npq\

1

/
= ¢;(A) + E Qirj_1a; = cj(A) + ¢-j(A),

i=0l—-j+1

as claimed. [

For the next result, we will use, as other papers on binary sequences do,
the simple observation that

ab=a+ b -1 mod 4
foralla,be{+1, —1}.

PROPOSITION 2. Let A = (ay,...,a;) be a Barker sequence, with
[ >3. Then A is also a periodic Barker sequence.

Proof. We have to prove that y; = y j(A) is independent of j =1, ...,
[ — 1, and equal to 0 or + 1. First of all, we have (with ¢; = c;(A4))

(1) ¢ = 0 ?f [ — jis even
+1 if [/-jisodd
forall j=1,...,/] — 1.
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This follows from the obvious congruence ¢; = / — j mod 2, and the fact
that c; e {—- 1,0, + 1}, forall j=1,...,1 — 1.

Now, applying the relation ab =a + b — 1 mod 4 forany a, b = + 1, we
have

1 I-j
(2) c;j= Y aiai ;= Y, (a+a.;)— (I—j) mod 4

i=1 i=1
forj=1,...,1—-1.
Comparing the above congruences for two successive values of j, we obtain
(3) cj—cj+1-3a,_j+aj+1—-1 m0d4,

forj=1,...,1—2.
Changing j to / — j — 1 leaves the right-hand-side unchanged. Therefore,
we have

(4) Ci—Civ1=ECi—j1 — Ci—j m0d4,
forj=1,...,] — 2. Since|c; — ¢;, | < 1 for all j by (1), we have in fact an
equality:

Ci —Civ1 =Ci—j—1 — Ci—;

for j=1,...,] — 2. Using Lemma 1, it follows that

Y= Yj+1

for all j =1, ...,/ — 2, and thus vy, is independent of j, as claimed.

Now |y;|=]|c;+¢,_;|<2, and equality can occur only if ¢; = ¢;_;
= + 1, which by (1) implies in particular that j must be odd. But this is
impossible, because 7y, is independent of j. Therefore |y;|< 1, as
claimed. [

1. DIFFERENCE SETS

In this section, we show that the notion of a binary sequence with constant
periodic correlations is equivalent to that of a difference set on a cyclic group.
We then recall basic results concerning these difference sets.

Definition. A difference set D on a group G is a subset D C G such that
the cardinality of the intersection

Dng-D
is independent of g for g € G\{e}. Here, gD = {gx | x € D} is the translate
of D by the element g € G, and e is the neutral element of G.

A\
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It is traditional to denote by v the cardinality of G, by k the cardinality
of D and by A the cardinality of the intersection D n gD:

v=|G|, k=|D|, A=|DngD]|.

The difference set D in G is then said to have parameters (v, k, ). It is also
traditional to denote by n the difference k — A.

Observe that if D C G is a difference set, then so is D" = G\D. Thus we
can and will always assume that k = | D| < jv.

Note that if D C G is a difference set, the collection of right translates of
D, including D itself, viz.

% ={Dg|g € G}

constitutes a Symmez‘ric block design on G. This means that each element of
G is contained in exactly k blocks (recall k¥ = | D |), and every pair of (distinct)
elements of G belongs to precisely A blocks.

Indeed, if g € G, let g, = x~1g; then

geDg, ifandonlyif xeD

and therefore the correspondence x — Dg, provides a bijection between D
and the set of blocks containing g.
If g1,8 € G is a pair of distinct elements of G, set g, = x~!g;. Then,

g, €Dg, ifandonlyif xeDngg;,'D

and the assignment x Dg, establishes a bijection between D N 818, 'D
of cardinality A and the set of blocks Dg containing the pair g, g.

PROPOSITION.  There is a bijection between the set of binary sequences
A = (ay, ..., a,) with constant periodic correlation vy, i.e.
Y= Y a-a. j
imod v
Jor j=1,...,0— 1, and difference sets D on the cyclic group G = Z/vZ.

of order v with parameters (v,k,\), where \ =k — w—-v)4. The
set D associated to the sequence A is given by D = {ila; = —1}.

Remark. In particular, if there is a binary sequence of length v with
constant periodic correlation v, then one must have v = Y mod 4, and vy is
given by

Y=0U—4n,
where, as above, n = k — ).
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We call vy = v — 4n the correlation of the cyclic difference set D with
parameters (v, k, A).

In the proposition we must momentarily relax our convention
|DI<|Gl/2.

Proof. Let G = Z/vZ. We will represent the elements of G by {1, 2, ..., v}.

v

Suppose A = (a,,...,a,) is a binary sequence and y = Zi: [ il 1S
independent of j for j = 1,...,0 — 1. To A we associate the subset

Set k = | D|. We claim that
A=|DAG+D)|=k—(v—v)/4

for all j # 0. Indeed, we have

y= Yaa., =|Dn(+D)|+|Dn(j+D)|-|Dn({+D)
=1

- |D"'n(j+ D),
where D' = G\ D.
Now, we have

1) |IDA(+D)|+|Dn(+D)]|=k
Q@ |IDn(+D)|+|D'n(j+D)|=k
B) |IDNn(+D)|+|Dn(+D)|=v-k
@ |IDn(+D)|+|Dn(+D)|=v-k

from which we conclude (by comparing (1) and (2)):

|IDN({+D)|=|D'n(j+D)|=k - %

and (by substracting (3) from (1)):
I DN +D)|-|D'n(j+D)|=2k-v.

Comparing this with

Yy=[Dn(G+D)|+|D'n(j+D)|-2tk -1,

we get the desired relation
2 =2k —-v+7y+2k—=M\).

Conversely, if D C Z/vZ is a cyclic difference set, then viewing D as a subset
of {1,...,v}, define q; = + 1 if i¢ D and q; = — 1 if i € D. The periodic
correlations y = ), ., @a.+; (j=1,...,0—1) are independent of j and
have the common value y = v — 4n.
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Equivalently, we may recast the proof as follows: write

D) = Y z9e€Z[z]/(z"—1)

deD
if D C Z/vZ. We see that D is a difference set with parameters (v, k, 1) if and
only if
(1) D()D(iz"Y) =n+ AT,
where n=k—XAand T=1+2z+ - +z°~1. Now, A@ = Y, @z’
has constant periodic correlation vy if and only if
) ARQAZ H=v+y(T-1) in Z[z]1/z"—1)

If D C Z/vZ is the set of exponents of the monomials z/ occurring with
coefficient — 1 in A(z), then A(z) = T — 2D(z), where D(z) = ), ,.,2° as
above.

An easy calculation, using 7(z~!) = T(z) and z *+ T(z) = T(z), shows that
(2) is equivalent to

D@Dz = U—;—Y + (k— U-;—Z) T

and therefore (2) is equivalent to D being a cyclic difference set with parameters

U__
.k, where & = k — — L

Note that a difference set on a group- G could equivalently be defined as
a subset D of a G—set E such that

M |E|=]G]|,

(2) G acts transitively on E, i.e. E affords the regular representation of
G, and

(3) A =|D n gD|is independent of g for g € G\{1}.
We shall sometimes use this presentation in the sequel.

Several necessary conditions must be satisfied by a given triple (v, k, L) to

be realized as the parameters of some difference set. These well known condi-
tions are recalled below. We refer to [L] for more details.

First of all, the triple (v, kK, A) must satisfy the equation
k(k—1)=x@-1).
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This follows easily from the definition of a symmetric block design. Next, we
have:

(1) if v is even, then n = kK — X must be a square (Schiitzenberger);
(2) if v is odd, the equation

1
S w-1)

nX?+ (-1 AY:= 22
must have a solution (X, Y, Z) # (0,0,0) in integers (Chowla-Ryser) .

A deeper condition on the parameters of a difference set in an abelian
group is provided by the following result. First we need a

Definition. A prime number p is said to be semi-primitive modulo the
positive integer w if there is some integer f for which the equation

pf=—-1 modw

holds. A number m is said to be semi-primitive modulo w if all its prime factors
are. Finally, the number m is said to be self-conjugate modulo w, if m is semi-
primitive modulo w’, where w’ denotes the largest divisor of w which is prime
to m.

SEMI-PRIMITIVITY THEOREM. Suppose that there exists a (,k,\)-
difference set in an abelian group G. Let p be any prime divisor of
n=k— A Then p is not semi-primitive modulo the exponent e(G)
of G.

Furthermore, if p divides the square-free part of n, then there is no
divisor w>1 of v=|G| for which p is semi-primitive mod w.

(See [L], Theorem 4.5, page 134.)

Another very useful theorem of R. Turyn is:

TURYN’S INEQUALITY. Assume a non-trivial (v,k,\) difference set in a
cyclic group exists. Let m > 1 be an integer such that m? divides
n=k— A and such that m is self-conjugate modulo w for some divisor
w>1 of v. If ged(m,w)=1 then m <v/w. If gced(m,w) > 1 then

m<2 " o/w,

where r is the number of distinct prime factors of gcd(m,w).
(See [T1]; in the special case r = 1, see also [Y] and [R].)

We now turn to one of the multiplier theorems, which sometimes describes
a difference set as a union of orbits under multiplication by a certain integer.

First a

\
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Definition. Let G be a finite abelian group and D a difference set on G.
The integer m is a multiplier for D if m is prime to v = | G |, and if the isomor-
phism m: G — G induced by multiplication by m, permutes the translates
a+ D (aeG) of D.

Thus, m is a multiplier if (m,v) = 1, and if m - D = a + D for some
aeq.

We will also need the following result:

PROPOSITION. Let m be a multiplier of a difference set D in an
abelian group G. Then some translate D' =a+ D (aeG) of D, is
fixed under multiplication by m, ie. m- D" = D".

This follows at once from a more general result, stating that an auto-
morphism of a symmetric block design fixes as many points as blocks. (See
[L], Theorem 3.1, page 78.) In our context, the multiplication by m in G
fixes 0, hence it must fix at least one translate of D.

As a consequence, if an abelian difference set D admits a multiplier m, we
may very well suppose that D is fixed under multiplication by #, and thus,
that D is a union of orbits under multiplication by m.

The multiplier theorem below tells us how to find multipliers of abelian
difference sets.

MULTIPLIER THEOREM. Let D be a (v,k,\) difference set in an
abelian group G. Let ny be a divisor of n =k — A such that n; > \.
Suppose m is an integer satisfying

(1) ged(m,v) = 1;

(2) for every prime divisor p of n,, m is a power of p modulo
the exponent e of G.

Then, m is a multiplier of the difference set D.

In Section 4, we will use this theorem to exclude the existence of periodic
Barker sequences of various lengths.

2. PERIODIC BARKER SEQUENCES

This section deals with periodic Barker sequences, i.e. binary sequences
whose periodic correlations v; are constant and equal to y € {0, 1, — 1}.

Case y = 0. In this case, the parameters (v,k,A) and n = k — A of the
associated cyclic difference set (see Section 1) satisfy:

n=N?, 0v=4N?, k=2N2 - N, A=N2-N.
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These follow respectively from Schiitzenberger’s theorem for v even, the
relations v — 4n = vy, k(k—1) = A(v — 1), and our assumption k < v/2.

We will now prove a theorem of R. Turyn [T1], stating that N must
necessarily be odd. (See also [Bau].)

THEOREM 1. Let D be a cyclic difference set with parameters
vV=4N?, k =2N? — N and L =N?—- N. Then N is odd.

For the proof, we will need the following two lemmas.

LEMMA 1. Let m =mn, be a primitive 2’-th root of unity (r>0).
Let © € Z[n] satisfy

00 = 0 mod(2)>, (s> 0)
where — denotes complex conjugation. Then
6 =0 mod(2)*.

Proof. 1In Z[n], the ideal (2) is a power of the prime ideal P = (1 —n),
and clearly P = P. We have (2) = P*, say.

Suppose 6 € P™ where m is maximal. Then 00 € P27, and 2m is also F
maximal. But 00 € (2)% = P2, which implies 2m > 2sk, i.e. m > sk, and
hence 0 € (2)¢, as claimed. [

On the level of group rings, there is a similar result, albeit necessarily
weaker. For i > 0, we will use the following notation:

(1) m;is a primitive 2¢-th root of unity;

(2) T is the multiplicative cyclic group of order 2/ with generator x;;
(3) p:ZI';— Z[n;] is the map induced by p(x;) = n;;

(4) v;:ZI';— ZI';_; is the map induced by v;(x;) = x;-; (J <i).

LEMMA 2. Let 0 € Z[n,] (r>0) satisfy
00 =0 mod(2)*, ((0<s<7)
and let o € ZI', be any element such that p(a) = 0. Then
vs(a) = 0 mod (2)¢
in ZI',_; .
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Proof. By induction on s.

(1) Case s = 1. Let us write a as

2r—1

o= Y X .
i=0
Then
F=l. _
0= p(a) = Z (0 — Qig2r-1)T, 5
i=0
since 12" = — 1. Furthermore, the powers 1, with 0 < k < 27-1 — 1 form

a Z-basis of Z[n,]. By Lemma 1, we have 6 = 0 mod (2), and therefore
(*) 0; = O;42—-1 mod (2)

foralli=0,..,2"" ' — 1.
On the other hand,

2l

vi() = Y (0 + Girar-1)Xp_q s
i=0

and (*) implies that v;(a) = 0 mod (2) in ZI',_,, as claimed.

(2) Case s> 1. By (1) above, we have v;(a) =0 mod (2) in ZI',_;.
Thus we have v,(a) = 2B in ZI',_;. Now p(B) = 5 p(a), so that

p(B)p(B) =0 mod (2)%~V

in Z[n,_,]. By the induction hypothesis, we have v,_;(B) = 0 mod (2)*~! in
ZT, ., and therefore vy(a) = 0 mod (2)s in ZI',_,. [

Proof of the Theorem. Let D C Z/vZ = C, denote a difference set with
parameters (U, k,\A) = (4N?,2N? — N,N? — N). Identifying ZC, with
Z[x]/(x* — 1), we will denote by 6 (x) the element 0(x) = Z sepX? € LC,. We
have by hypothesis,

(1) 00)0(x~) = N2+ A1 +x+ - +x"1).

Given any element z in some ring 4, we will denote by 6(z) the image of
0(x) under the map ¢: ZC, > A induced by x— z.
Let us write N = 2N, with N; odd. Thus, w = 22/+2 is the highest power

| of 2 dividing v = 4N?2. Let I'; denote, as above, the cyclic group of order 2!
with generator Xx;.
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If n is a primitive 22/+2-th root of unity, we have 6(m) - 06(m) = N? =0
mod (2)2. Hence, Lemma 2 implies 0(x;,,) = 0 mod (2)! in ZT,, ,. Denoting
X:+2 by ¥, we thus have

0(y) = 20,(»),

for some 0,(y) € ZI';, 5.
Now, a direct computation yields

0.0 =N+ Ni(N=1) (1 +y+ -+ +y22-1),

so that the constant term (i.e., the coefficient of 1 = %) of 6,(»)6,(») is
equal to N2 + N;(N — 1). On the other hand, write 6,(y) as

¥ g
0,(») = igo diy’
in ZI,,,. In this notation, the constant term of 6;(»)6,(y) is equal to
Y. d?, so that
NI+ NI(N-1) = Y d;.
Now, ), d; = (), d)* mod 2, and
(Y d)2=0,(1)2 = N2 + NX(N - 1)2:+2,
Thus,
NI+ NX(N-1) =N+ NX(IN-1)2/*2 mod 2,

which implies N = 1 mod 2, as claimed. [

Another very strong restriction on the parameter N is provided by the
following easy consequence of Turyn’s Inequality, Section 1.

THEOREM 2. Let N be an odd integer. If N has a prime factor p
which is self-conjugate modulo N, then there is no periodic Barker sequence
of length | = 4N?2.

Recall that, by definition, p is self-conjugate modulo N if and only if there
is a positive integer f such that p/ = — 1 mod N’, where N’ is the largest
divisor of N which is relatively prime to p.

Proof. 1In the notation of Turyn’s Inequality, take v = 4N? of course,
m=p, and w = v/2 = 2N?. Thus v/w = 2 and r, the number of distinct
prime factors of ged(m,w) = p is equal to 1 here.




BARKER SEQUENCES AND DIFFERENCE SETS 357

Let now N’ denote the largest divisor of N which is relatively prime to p.
By hypothesis, there is a positive integer f such that p/ = — 1 mod N’. Since
N’ and p are odd, we also have p¥'/ = — 1 mod 2N"2. Therefore p is self-
conjugate modulo 2N2 = w, because 2N’2 is the largest divisor of 2N? which
is relatively prime to p. If a periodic Barker sequence of length 4N? existed,
Turyn’s Inequality would then imply

p=m<2 - Wvw/w=2,

contrary to the fact that p divides N. [

An immediate corollary is that N cannot be a prime or a prime power.
R. Turyn used his inequality to show that there exists no periodic Barker
sequence of length / = 4N? with 1 < N < 55. (The case N = 39 required a
special argument.) See [T2].

As an example, suppose that N = p* - g*, where both p, g are prime and
= 3 mod 4. The hypothesis of Theorem 2 is then satisfied, i.e. either p or ¢
is self-conjugate modulo N.

qg -1
This follows from quadratic reciprocity, which implies that either p 2
p—-1
= —1lmodg,orqg 2 = -1 mod p.

More generally, suppose that N = p* - g* - N;, where p, g are as above,
and where N, is coprime to p, g, and satisfies furthermore Nf < min(p, q).
Then there are no periodic Barker sequences of length 4N2. This follows
from Turyn’s Inequality, by choosing w = 4p?*q?, and m = p or gq,
according as to wether p is self-conjugate modulo g, or g is self-conjugate
modulo p.

(As observed by J. Jedwab, it even suffices to have N2 < min (p*, ¢*),
taking m = p* or g*, as the case may be.)

Case y = 1. In this case, the parameters (v,k,A) and n = k — A satisfy

v =2t(t+1)+ 1
k=1?

1
A=—-t(t-1
2( )

1
and n =£t(t+ 1),
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for some positive integer ¢. Indeed, v = 4n + 1 (since v — y = 4n for a periodic
Barker sequence with correlation y), and the symmetric block design relation
k(k—1) =A@ —1) yields kK = (k—2)X)2. Setting t = k — 2A, we find the
parametrization above. Since the parameter values are the same for — ¢ and
t—1, we may assume ¢ > 1. (Recall also our convention k£ < %u.) Observe
that the Chowla-Ryser condition is here always satisfied: the triple
X=1,Y=1 and Z =t is a nontrivial integral solution to the equation

nX? + (— 1)E (U_l)kYz = Z2?. The case t = 1 is trivial: A = 0. It does however
correspond to the Barker sequence 1,1,1, —1,1. For # = 2, we have the
parameter values (13,4, 1) and the essentially unique cyclic difference set

D=1{0,1,3,9}.

More geometrically, we can describe this difference set using the projective
plane P2(F;) over the field F; with 3 elements which possesses an automor-
phism, the Singer automorphism of order 13. Viewing E = P2(F;) as a G-set
with G cyclic of order 13, the difference set D C E is then given by any line
P!(F;) C P2(F;). The Singer automorphism is best described by taking the
orbits of the F¥-action on F,;. The map S:P2%(F;) > P2(F;) then corres-
ponds to the multiplication by a generator a of the cyclic group F¥ . (See [L],
page 125.)

We will prove that there is no other cyclic difference set with parameters

1
(Zt(t + 1), tz’i 1t — 1)) for t < 100, except perhaps for ¢ = 50, where the

existence of a cyclic difference set with parameters (5101, 2500, 1225) still
remains unsettled. We only know that 191 is a multiplier if such a difference
set exists.

These non-existence claims are obtained by using the semi-primitivity and
multiplier theorems of Section 1. Table I at the end of the paper indicates in
each case which of these two results was used. When relevant, the semi-
primitivity theorem is very easy to use. In our case, where the parameters are

1
of the form (v,k,\) = (Zt(t + 1)+ 1, tz,z 1t — 1)) , there is one further

simplification; the semi-primitivity theorem implies the non-existence of a
cyclic difference set with n even, in the following two instances:

(1) v=2t(t+ 1)+ 1is a prime power

1
2 n=k—-A= > t(t — 1) is square-free.
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(Unfortunately, this simplified criterion does not apply for odd.) Indeed,
since v = 4n + 1, we have

4dn= -1 modv,

so that one of the primes dividing 47 must be of even order in the group of
units (Z/vZ)*.

If n is even, then 4n and n are divisible by the same primes and one of
the primes dividing » must be of even order modulo v. Let p, say, be a prime
divisor of n and let 2f be its order in (Z/vZ)*.

If v is a prime power, the group (Z/vZ)* is cyclic (yes, v is odd) and
p/ = — 1 mod v. The semi-primitivity theorem applies. If v is not a prime
power, there is a prime power divisor w of v such that p is of even order, 2 f’
say, in (Z/wZ)*. Again, (Z/wZ)* being cyclic, this implies p/" = — 1 mod w,
and the semi-primitivity theorem applies. In the range 3 < ¢ < 100, the semi-
primitivity theorem takes care of all the cases, except the values ¢ = 9, 49, 50
and 82. (See Table I.)

In contrast, applying the multiplier theorem may require quite lengthy com-
putations on the structure of multiplier orbits. The cases t = 9, ¢ = 82 (easy)
and ¢ = 49 (harder) are treated in Section 4 using the multiplier theorem.

Case vy = — 1. The symmetric block design equation k(k—1) = A(v — 1) in
this case yields the parameter values (v, k,A) = dn—1,2n -1, n — 1), where
n = k — A as usual. Recall that we are assuming k& < % v, without loss of
generality.

1
-@-1)

Again the Chowla-Ryser equation nX? + (— 1)2 AY?2 = Z2? is non-
trivially solvable in integers: X =1, Y =1, Z = 1.
However, here the situation is quite different from the one in case y = 1.

There are well known families of cyclic difference sets with parameters of the
form 4n—1,2n—1,n-1).

(1) Quadratic residues.

Suppose v = 4n — 1 = pis a prime. Let D C Z/pZ be the set of non-zero
quadratic residues mod p. Then,

1
k=|D|= 5(p—1)=2n—1

and D is a difference set with A = (p — 3)/4 = n — 1. We shall denote this
difference set by QR(p).
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(2) Projective spaces.

Let E = P4(F,) be the projective d-space over the field with two elements
F,. Of course, | E|=29+! — 1. The hyperplanes in E form a symmetric
block design with parameters

Q4+1—-1,29—-1,24-1-1).
The Singer automorphism exhibits this design as a cyclic design on the cyclic

group of order v = 29+1 — 1. We use P4(F,) as a notation for this cyclic
difference set.

(3) Gordon-Mills-Welch difference sets.

Other difference sets with the same parameters as projective spaces have

been discovered by B. Gordon, W. H. Mills and L. R. Welch. (See [GMW].)
They appear in Table II under the label GMW. We give some details of their
construction in Section 5.

(4) Twin primes cyclic difference sets.

If p and g are twin primes, ¢ = p + 2, there is a difference set on
1 1
1Z/pgZ = 1Z/pZ x Z/qZ with parameters (pq, E(pq — 1),Z(pq — 3)) and

which we shall denote by TP(p, q).
The set D C Z/pZ X Z/qZ is defined by

D = (Z/pZ x {0}) U (S, X S;) U (N, X N,) ,

where S, and N, denote the (non-zero) squares and non-squares mod p
respectively, and similarly for S, and N,.

(5) Marshall Hall cyclic difference sets.

If v is a prime number of the form v = 4x2? + 27 where x is an integer,

v—1 v—-3
there is a cyclic difference set with parameters (u, 5 ' 4 ) [H],

page 170. We will denote this difference set by MH (v). In Table II, they occur
for the values n = 56 and n = 71 of the parameter n.

In Table II, we settle the existence question for a cyclic difference set with
parameters (4n—1,2n—1,n—1) for n = 2, ..., 100.

It turns out that the cyclic difference sets with parameters (7, 3, 1) provided
by P2(F;) and QR (7) are isomorphic. In the two other cases of Table II where
4n — 1 is a prime p of the form p = 29 — 1 (that is, n = 8 and 32), P¢~1(F,)
and QR (p) are non-isomorphic difference sets. (According to [BF], there
actually are 6 distinct examples for n = 32.)
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In the fourth column of Table II, we have indicated the known existing
cyclic difference sets or the relevant prime power exhibiting non-existence by
the semi-primitivity theorem of Section 1. The values of the parameter # left
out by these two classes are n = 7, 25, 28, 37, 43, 44, 49, 52, 61, 67, 72, 75,
76, 86, 97, 99 and 100. We have reached a non-existence conclusion in these
cases by using the multiplier theorem of Section 1. The required calculations
being quite lengthy, it is impossible to expose them all. Instead, Section 4
contains some typical examples of application of this theorem.

3. BARKER SEQUENCES

Recall that a Barker sequence is a binary sequence A = (a, ..., a;) such
that the aperiodic correlations c¢; (4) = Z:’l a;a;.; belong to {—1,0,1}
forallj=1,...,1 - 1.

The set of Barker sequences of a given length is preserved by the following
transformations:

A= aA, where (nd);, = — g
A BA, where (BA); = (- 1)ia;

A vA, where (YyA), =a;_;,q,

with / = length(A).

The group of transformations of Barker sequences generated by o, B and
Y is the elementary abelian 2-group Z/2Z x Z/2Z x Z./2Z of rank 3 if / is odd,
and is the non-abelian dihedral 2-group of order 8 with presentation

Dy=<a,B,y: 02 =B2=y2=1, af = Ba, ay = ya, yBy = ap >
for / even. Note that in this case, Dy is also generated by p = By and y with
presentation

Dy = <p,y:p*=vy2=1l,ypy=p-1> .

Case of odd length. The complete list of Barker sequences of odd length was
established by R. Turyn and J. Storer, [ST] and reads as follows (in

lengths > 3):
(17 1, - 1)

1,1,1, — 1, 1)
1,1,1, -1, - 1,1, - 1)
a,1,1,-1,-1,-1,1, -1, - 1,1, - 1)
1,1,1,1,1, -1, -1,1,1, = 1,1, -1, 1) .
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The list is complete up to the transformations o, p and y given above. The orbit
of each Barker sequence in the above Turyn-Storer list under this transforma-
tion group consists of 4 sequences.

Case of even length. The situation here is completely different. The only
known examples are

(I,1) and (,1,1, -1),

again up to modifications by the above transformations a, p and y. Note that
the sequence (1, 1, 1, — 1) gives rise to 8 sequences under this transformation
group.

It is widely believed that these are the only Barker sequences of even length.
We will show that this is true up to length 1 898 884.

We know from Section 1 that a Barker sequence of even length (> 4) is
also a periodic Barker sequence with correlation y = 0, and we know from
Section 2 that the length / must be of the form / = 4N? with N odd, if [ > 4.
We also know from Section 2 that if N is an odd integer with a prime factor
p such that p is self-conjugate modulo A, then there is no (periodic) Barker
sequence of length 4N?2. In other words, N is excluded if, for p as above,
there is some positive integer f such that p/ = — 1 mod N’, where N’ is the
largest divisor of N which is relatively prime to p. An immediate consequence
is that N cannot be a prime or a prime power. R. Turyn used the above theorem
to show that, if there exists a (periodic) Barker sequence of length / = 4N?
with &V > 1, then necessarily N > 55. With the following result of [EKS], this
bound can be improved to N > 689, but only for true (i.e. aperiodic) Barker
sequences.

THEOREM. Let | be an even integer having a prime factor p =3
mod 4. Then there is no Barker sequence of length .

For the proof, we will need the following

LEMMA. Let f(z),g8() € F,l[z, 2 '] be non-zero elements satisfying

f@ ") +gkek")=0.
Then either p=2 or p=1 mod 4.

Proof. Since F,[z,z-!'] is a unique factorization domain, we may
suppose that f(z), g(z) are coprime, by clearing any common factor. But then,
the equation implies that f(z) divides g(z~'). We may thus write

gz N =h@f), gk =hz"fiz"hH

q
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for some A(z) € F,[z, z ~!]. Substituting these expressions for g(z) and g(z~ 1)
and clearing the common factor f(z)f(z~!) in the resulting equation,
we obtain

1+ h@h(iz)=0.

Letting z = 1, this gives — 1 = A(1)2 in F,, and therefore p is not congruent
to 3 mod 4. [

Proof of the Theorem. Let A = (ay,...,a;) be a Barker sequence of
even length /, and consider the two polynomials

l /
F) = Y azi"! and GR =F(-2)= ) (-1ilazi-'.

i=1 i=1
CLAIM: Then, (F,G) is a Golay pair, i.e.
FRFz )+ GRGErYH =21 inZzz"].

Indeed, the constant term of F(z)F(z~!) + G(z)G(z~') is equal to
2 Y a? = 21. On the other hand, for j > 0, the coefficient of z/ + z~/ in
FRF(z ') + GGz is equal to

[—J
.El (@iaiv; + (- aiaiy) ,
which is zero if j is odd, and is equal to 2c;(A) if j is even. But c;(4) = 0
if j is even and positive, since c;(A4) belongs to { — 1,0, 1} by hypothesis, and
c;=j mod 2. Therefore, F(2)F(z~!) + G(z)G(z~ ') = 2/ in Z[z,z7'], as
claimed.

Reducing the above equation modulo p, we obtain two non-zero elements
f(2), g(2) in F,[z, z 1] satisfying

f@f@iz ') +gez)=0.

By the lemma above, we conclude that p cannot be congruent to 3 mod 4. [

APPLICATION. There is no Barker sequence of length | = 4N?, if

1 < N < 689. Inparticular, there is no Barker sequence of even length greater
than 4 and less than 1 898 884.

Of course, it suffices to consider only those N < 689 which are odd, are
not a prime or a prime power, and have no factor congruent to 3 mod 4. Since

the square root of 689 is smaller than 26, every such N must have a prime
factor equal to 5, 13 or 17.
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The remaining candidates are listed below, together with an indication in
parenthesis showing that each one (except 505) is excluded by Theorem 2 in
Section 2: if N has a prime factor p such that p/ = — 1 mod N’, where N’
is the largest divisor of N relatively prime to p, then there is no (periodic)
Barker sequence of length 4N2.

REMAINING CANDIDATES (excluded by Theorem 2, except N = 505.)

N N

65=5-13 (52 = — 1 mod 13) 425 = 52-17 (58 = — 1 mod 17)
85=5-17  (17*= —1mod5) 445 = 5 - 89 (89 = — 1 mod 5)
145 =5-29 29 = — 1mod)5) 481 = 13 - 37 (37% = — 1 mod 13)
185 =5 - 37 (37?2 = — 1 mod 5) 485 = 5-97 (972 = — 1 mod 5)
205 = 5 - 41 (59 = — 1mod4l1) 493 = 17 - 29 (172 = — 1 mod 29)
221 =13 - 17 (132 = — 1mod 17) 505 =5-101
265=5-53  (532= —1mod>5) 533 = 13-43 (433 = — 1 mod 13)
305 = 5 - 61 (515 = — 1 mod 61) 545=5-109 (109 = — 1 mod 5)
325 =5%2-13 (52 = — 1mod 13) 565 =5-113 (1132 = —1mod5)
365=5-73  (732= —1mod5) 629 =17-37 (378 = —1mod17)
377 =13-29 (137 = — 1 mod 29) 685 =5-137 (1372 = — 1 mod5)

The case N = 505 = 5 - 101 cannot be excluded by Theorem 2, because
101 = 1 mod 5 and 5% = 1 mod 101. However, 505 can still be excluded by
Turyn’s Inequality, as observed in [JL]: choosing p = 101 and w = 2 - 1012,
so that p is trivially semi-primitive modulo w, we would have

p< L 252250,
w
a contradiction to the assumed existence of a Barker sequence of length
4 - 5052,

The first open case is thus N = 689 = 13 - 53. We have 53 = 1 mod 13 and
1313 = 1 mod 53, so that neither 53 is semi-primitive mod 13, nor 13 is semi-
primitive mod 53. The next open case is N = 793 = 13 - 61.

4. THE USE OF THE MULTIPLIER THEOREM

In this section we give the details of some (typical) non-existence proofs
needed to establish the tables, using the multiplier theorem.

Recall that if D is a cyclic difference set with parameters (v, k, ), and if
n = k — A is greater than A, then the group of multipliers of D contains the
intersection M in (Z/vZ)* of the subgroups generated by /, ..., [,, where
li, ..., [, are the prime factors of n.
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(1) Parameters (v = 181, k = 81, A = 36), Table I with t = 9.

Here, n = 32 - 5, and since 5 = 3% mod 181, the multiplier theorem says
that if an abelian difference set exists with these parameters, then 5 is a
multiplier. The orbits of the multiplication by 5 in Z/181Z are {0} and
12 orbits of cardinality 15, e.g.

{1, 5, 25, 125, 82, 48, 59, 114, 27, 135, 132, 117, 42, 29, 145} .

(Note that 181 is a prime number.) No subset of G = Z/181Z of cardinality
k = 81 may thus be a union of orbits.

(2) Parameters (v = 4901, k = 2401, A = 1176), Table I with t = 49.

Here, n = 52 - 72, We have 25 = 52 = 7% mod 4901. Therefore, if an abe-
lian difference set exists, m = 25 must be a multiplier. Writing the group
G = 7Z/4901Z as G = Z/132?Z x Z/29Z, with group operation (a, b) - (a’,b")
= (a@+a’,b+ b’), the orbits under multiplication by m = 25 are

E =1{00,0)}
U ={(13i,0), (- 135,0)} i=1,2,3,4,5,6
Vi=10,0), 25},0), (118/,0), (77/,0), (66/,0), (129/,0), (144,0), (12/,0),

(1314,0), (64/,0), (794,0), (1164,0), (27/,0), (—/,0), ...}
J=1,...,6, each V; of cardinality 26.

X ={(0,1), (0,25), (0,16), (0,23), (0,24), (0,20), (0,7)}
Y ={(0,2), (0,21), (0,3), (0,17), (0,19), (0,11), (0, 14)}
X ={0, -x10,x € X}
Y ={(0,-»)1](0,y) € Y}

each of cardinality 7.

There are moreover, the 24 orbits U;- X, U, - )_(, u-Y U- Y of
cardinality 14, where

A-B={a-blaecA,beB}.

Finally, there are 24 orbits V- X, V;- X , Vi Y, V- Y of cardinality 182.
Contrary to the preceding example, there are many ways of writing the
cardinality 2401 of a putative difference set D as a sum of numbers taken from
the set of orbit cardinalities.

To ease calculations, we view a subset § C G as the element Y ses S in the
integral group ring. Note that, with this convention, the product S - T in ZG
coincides with the element of ZG associated with the product set
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S-T={s-t|seS,te T} A difference set D, if it exists with the above
parameters, can be written as

D=C+ AX + BY + PX + QY
where C, as well as A, B, P, Q, is of the form

6
B;U; + E YiV;

1 Jj=1
with coefficients a, By, ..., Bs, Y1, ..., Y¢ all equal to 0 or 1.
As in Section 1, D is a difference set if and only if

C=0oF +

i

[N g =)

DD = 1225 + 1176 - (1+ Y Ui+ ¥ V;-) 1+ X+X+Y+7Y).

Now, writing G = G, X G, as above, G, = Z/132Z, G, = Z/29Z, let_n: G
= ZG, be the projection on the group ring of G;. We have nX = nX = nY
= nY = 7, and reducing modulo 7,

n(DD) = CC = 0 in F,G, .

The involution of ZG, sending (a, b) to (a, b) = (—a, — b), is the identity
on U, V;:

(],"'—‘Ui f}j=l/j.

Therefore C = C and C? = 0 in F,G,. However, F,G,, where G, is of order
132, prime to 7, is a semi-simple algebra and does not contain any nilpotent
element. It follows that C =0 in F;G;. Since the coefficients of
C=aE+ Y, BU+ X;_,v:V; are all 0 or 1, this implies C =0 in
7G,, i.e.

D =AX + BY + PX + QY ,
and 7D = 7 - S with

S=r+ ZS,‘U,"'*‘ Etjl/j’
where S =A + B+ P + Q. Thus, all coefficients r, sy, ..., Ss, {1, ..., tg are

non-negative in_tegers < 4.
Again n(DD) = 1225 + 1176 - (1 + Y, U; + Y. V;) -29. Therefore,

6 6
S2 = 25 + 696 (1}+ Y U+ Y Vj).

i=1 Jj=1
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With our (abuse of) notation, we set Gy =1+ Y U+ Y, V;. Then,
G? = 169 - G,. Thus, we see that

S==x(5+2G)

are solutions of S? = 25 + 696 - G;. We claim that there is no other. This
will clearly finish the non-existence proof since r < 4. Note the decomposition

QG; = Q X Q(C13) X Q(Cieo)

of the algebra QG as a product of fields, where {5 is a primitive 13-th root
of unity, and ;¢ a primitive 169-th root of unity.

The element G, = 68 _ 2% e G, corresponds on the rlght hand side to
(169, 0, 0) since ;3 and C169 are roots of the polynomial Z v - o X*. It follows
that S2? = (3432,52,52). Hence, any solution Z e ZG, of the equation
72 = 25 + 696G, must correspond to (+ 343, +5, £5). Changing Z to — Z,
we can assume Z = (343, + 5, =+ 5). Now, the diagrams

ZG, — Z[Gs]

. !
7z - Fi3
and
1G, — Z[Cie]
! )
7z - |

where the right vertical arrows send {3, resp. {10 to 1 € Fy3, are commuta-

tive. Since 5 is not congruent to — 5 modulo 13, and 343 maps to + 5 € Fy3,
we see that Z = (343,5,5) =S

(B) Parameters (v = 13613, k = 6724, A = 3321), Table I with t = 82.

This case is as simple as case (1). Indeed, n = 3403 = 41 - 83. Since
41 = 833 mod 13613, it follows from the multiplier theorem that if a cyclic
difference set D with parameters (13613, 6724, 3321) existed, then 41 would
be a multiplier, and D could be taken to be a union of orbits under multiplica-
tion by 41 on the cyclic group Z/13613Z.

The order of 41 modulo 13613 is 3403, and beside the one-point orbit {0},
there are 4 orbits X, iX, i?X, i3X each of cardinality 3403, where

X ={1, 41, 1681, ..., 13281}
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and i is a square root of — 1 mod 13613, e.g. i = 165. Note that 13613 is a
prime number.

However, 6724 is not of the form ny + 3403n, with ny =0 or 1 and
0 < n; < 4. No difference set can therefore have the above parameters.
4), (5), (6) Parameters (v,k,\) = (33,13,6), (35,121,60) and (73,171, 85)
of Table II, with n = 7,61 and 86 respectively.

More generally, we will consider the case

p2t+1 . | p2t+1 -3
(U’k9>") = p2t+l’ s ’
2 4
where p is a prime = 3 mod 4.
We haven =k — A = —4———— . Let /,, ..., [, be the primes dividing n.

The group of multipliers for a putative difference set D with the above
parameters contains the intersection M in (Z/vZ)* of the subgroups generated
by Iy, ..., .. Since (Z/vZ)* is cyclic, M is the unique subgroup of (Z/vZ)*
whose order is the greatest common divisor of the orders ¢, ..., q, of
li,....,1, in (Z/vZ)*. We will now assume that the orders q,, ..., g, of the
prime factors /,, ...,[, of n = k — A in (Z/vZ)* are all divisible by p‘+!.

THEOREM. There is no cyclic difference set with parameters

0, k1) = (pzf“,pzm mh Y b _3) ,

p 4

where p is a prime = 3 mod 4, provided that the orders q,,...,q, of
the prime factors I,,...,I, of n=k— N in (Z/vZ)* are all divisible
by pt+ 1 .

Note that the hypotheses of the theorem above are satisfied for the three
examples we have in mind. (Cases n = 7,61 and 86 in Table II.)

(1) n=7:p=3,t=1, and 7 is of order 32 modulo 27;

2) n=6l:p=3,t=2, and 61 is of order 3* modulo 243;

(3) n=86:p=7,t=1, and 2 is of order 3 - 72 modulo 343, 43 is of
order 72 modulo 343.

As expected, the hypothesis on the orders of the prime factors of »n is not
113 4+ 1

satisfied in general. It fails for instance for p = 11, £ = 1: here n =

= 333 = 32 - 37 and whereas 37 is of order 5 - 112 modulo 113, 3 is only of
order 5 - 11 modulo 113.
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However, failure of the hypothesis seems fairly rare: the next example with
t = 1 occurs for p = 3511. Note that 3511 is special for another reason: it
satisfies the congruence 2?-! =1 mod p?2, the only other known solution
being the famous p = 1093. Such prime numbers are known in the literature
as Wieferich prime numbers.

p2t+l + 1
The behaviour of the orders of the prime factors of n = —4— in

(Z/p*+1Z)* is probably a difficult question.

Proof of the Theorem. The hypothesis on the orders ¢, ..., g, means
that m = 1 + p*, which generates the subgroup of order p+! in (Z/p? +1Z)*,
is contained in all the subgroups </, >, ..., </, > of (Z/p*+'Z)*, and thus
is a multiplier of any candidate difference set D C Z/p?'+!Z with the above
parameters.

What are the orbits of multiplication by m =1 + p’ in the ring
Z/p**'Z? If a; = i- p'*!, then a - m = @ mod p?'+!, Hence, there are p!
fixed points ay = 0, ay, ..., @pr_;.

More generally, if a; ; = ip’~/+! with 1 <i< p’— 1 and ged(i,p) = 1,
J=1,...,t + 1, then a; ; produces an orbit {a; ;m"}, -, .., _ of length p/.
Here, we use the formula

ceny

(1 +pt)ps = 1 + pt+S mOd (pt+s+l)

easily proved (for p odd) by induction on s, and which implies that m has
(multiplicative) order p/ modulo p’+/.

The orbits A4;; of a;; with ie Z/p'Z for j=0 (@;,0=a;), and
i€ (Z/p'L)* for j =1, ...,t + 1 are easily verified to be disjoint. Together,

they sweep out
t+1

p'+ Y (p-1p'-! pi=pr+i
j=1
elements of the group Z/p2'*+!'Z. Hence, A;; with ie Z/p'Z for j =0
(@i,0=a;), and ie (Z/p'Z)* for j=1,..,t+ 1 is the complete collec-
tion of orbits under multiplication by m = 1 + p’in Z/p+1Z. At this point,
it may be more convenient to write the group ring of Z/p*+1Z as
Z[x]/(x?**' — 1). Identifying a subset A C Z/p?*+1Z with the sum of the

corresponding elements ), 2c 4@ 1n the group ring, the orbits A; j can then be
written as

pl =1
Ai,j — Z xip!~itimy

v=20
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If a difference set D with the above parameters exists, it must be of the form

t+1

D= ) x"'+ ¥ ) Ay
iESO Jj=1 iESj

where S, C Z/p‘Z and S; C (Z/p'Z)* for j=1,...,t+ 1. Now, let
n: Z[x]/ (xP**' — 1) > Z[y]/(y? — 1) be the projection of the group ring of
Z/p*+1Z onto the group ring of the cyclic group of order p. We have
n(x) = y and

nAj,j =pi for j=0,1,...,f

TA; 1 =p'*t-yt for e (Z/p'Z)* .

It follows that

nD =5y + ps; + - +p‘s,+p’+‘( Y, y"),

i€S8r41

where s; = Card(S)).
Let N =5+ ps;+ -+ + p's,and a, = Card{i|i € S;,,,i = n mod p},
then

nD =N+ p'tlY,
with Y= Y7 a,y*. (Note that o is indeed 0 as S, C (Z/p'Z)*.)
Therefore n(DD) = n(D)n (D) has the form

_ p-1 _
n(DD) = N> + Np'*1 '} a,(y*+y~*) + p+2YY .
p=1
On the other hand the condition for D being a difference set yields, after
applying =,

_ 2t+1 4 1 2t+1 _ 3 p—1
n(DD) = 2 3 £ pr | X »)|.
4 4 p=20

We will reach a contradiction by comparing the constant terms (coefficient

of 1 in Z[y]/(¥? — 1)) in the two expressions for n(Dl_)):
p—1 2t+1 2t+1
p + 1 p -3
N2 + p2z+z Z aﬁ — + p2t .
p=1 4 4

Note that £ = Card(D) = N + p‘*ls,,,, where s,.; = Card(S;,,), and

2t+1 __

hence N = ———2—— — p'*ls,, . Substituting this in the above equation,
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we get
4s,41=3p"~(p—1) mod p'*!.

Writing 4s,,; =3p'"~'(p—1) +z-p'*! for zeZ, we observe that
p =3 mod 4 implies z=2 mod 4, and so 2p'*!' |z p'*!|. But, s,
= Card(S,,;) < p'~Y(p -1, since S, C (Z/p'Z)*. 1t follows that

|z p'*| < Jds = 3p- Y p -1 <3p'-Y(p—1) <2p*1 |z ptHt.

We have reached the desired contradiction, i.e. no cyclic difference set

) p2t+1_1 p2t+l_3 . )
with parameters | p?'+1!, > . 1 exists if the orders of the

2t+1 0 1 o
prime factors of n = ‘UT in (Z/p?'+1Z)* are all divisible by p’+!. []

(7) Parameters (v =399, k = 199, A = 99), Table II. This is the last item in
Table II, corresponding to n = k — A = 100.

Since 4 = 22 = 58 mod 399, it follows that 4 must be a multiplier of any
abelian difference set D with the above parameters.
Writing Z/399Z as a direct product
7/399Z = Z/3Z x Z/7Z x Z/19Z ,
and accordingly writing the elements of Z/399Z as triples g = (x,,2),
xe /31,y € Z/TL, z € Z/19Z, we have the following orbits of the multipli-
cation by 4 in Z/399Z: all monomials XYZ, with X e{1,U, U},
Ye{l,V,V}, Ze {1, W, W}, where
1 ={(0,0,0)}
U=1{1,0,0)}
V =1{(0,1,0), (0, - 3,0), (0,2,0)}

w=1{(0,0,1), (0,0,4), (0,0,-3), (0,0,7), (0,0,9), (0,0, — 2),
0,0, —8), (0,0,6), (0,0,5)},
and bar denotes the conjugate, i.e. if C C Z/vZ, then C = {—¢glgecC).
All orbits, except 1, U, U have cardinality divisible by 3. Since
k =199 = 1 mod 3, any putative difference set D can be assumed to contain

a single one-point orbit 1, U or U. Multiplying D by U or U if necessary, we
may assume that
D=1+A-V+B-V+P-W+Q- W,
where _
A=(10+(11U+(12U,0 a;

<o; <1,
B=Bo+BlU+BZU,0<ﬁi<1

s

and P, Q are polynomials in U, U and v, V.
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We first show that 4 and B must be 0. Let ¢ = ag + a; + a5,
b= Po+ B: + B, and let w: Z/399Z — Z/7Z be the projection on the second
factor.

We indulge in various abuses of notation: we write m for the group ring
projection as well and denote nV again by V. Note that nU = nU = 1,
TW=nW=9.ThennD=1+aV + bV mod9, a congruence in the group
ring of Z/7Z.

Since DD =100+ 99 - (1+ U+ U) (1 + V+ V) (1 + W+ W), the equa-
tion expressing that D is a difference set with the required parameters, we have
DD =1 mod 9.

Consequently, using

VV =3+V+V, V:=V4+2V, V2=2V+V,
we get, expanding n(D[)) = n(D)n(l_)), and after collecting terms,
3(a2+ b)) + (@+b+a>+b2+3ab)(V+V)=0 mod 9.

Thus, a? + b? =0 mod 3, and this means ¢ = b =0 mod 3. But then
a? + b? + 3ab = 0 mod 9, and so we must also have

a+b=0 mod?9,

after looking at the coefficient of V + V in the above congruence.

Since 0<a<3,0<b<3, this means a=b=0 and therefore
A = B = 0. Any difference set D with parameters (399, 199, 99) can therefore
be assumed to have the form

D=1+P-W+Q W.
Plugging D=1+P - W+ Q- W into the equation
DD=100+ 91+ U+ ) Q+V+ V)1 + W+ W)

and using the multiplication table

WW=9+4W+ W), W2=4W + 5W,
we get

1+9PP+00)=100+99(1 +U+U)(A +V+ V)
P+QO+4PP+Q0)+5PO+4PQ =91 +U+U)(1+V+V),
where
P=py+pU+pU+ (ps+pU+psO)V + (ps+ prU+ ps UV
Q=g+ qU+ qU+ (gs+qU+qgsU)V + (gs+ q:U + qsU)V
with 0 < p;,q;: <1, fori =0,...,8.
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The first equation gives
PP+00=11+11A+U+0U)(Q+V+V).
Substituting in the second equation, we get
) P+Q+SPQ+4PQ=—44+551+U+0)1A+V+7V).

Since UU=1, U?=Uand VW =3+ V+V, V2= V+82f/, the constant
- = 2

terms in PQ and PQ are equal to E,.:Op,-qi + 3 Ej=3quj = ¢, say.

Hence, equating constant terms in the above equation (*), we must have

p0+q0+90=11.

The only solution to this equation with all p;, g; being 0 or 1, is py = go = 1,
pi=q;=0for i=1,...,8. This means P = Q = 1, contradicting (*).

5. COMMENTS ON THE EXAMPLES IN TABLES II

Difference sets with parameters (v,k,A) = (4n—1,2n—1,n— 1) are
usually called Hadamard difference sets. Our purpose here is to discuss the
classification of these cyclic difference sets for 2 < n < 100.

In many cases where v = 4n — 1 is a prime p, the quadratic residue
difference set, which we denote by QR (p) is unique for the given values of
the” parameters. This is obviously the case if the multiplier m has order

1
k = 5 (v —1) in (Z/vZ)*. Indeed, in this case, there are exactly 3 orbits of

multiplication by m in Z/vZ, namely 1 = {0}, M = {1, m, m?, ..., mk-1}
and M = {—1, —m,..., — m¥-1}, Thus the only choice for D is D =M
or D= M, which are isomorphic under conjugation o:Z/vZ — Z/vZ,
c(a) = —a.

In our Table II, this situation happens for n = 3, 5, 6, 12, 15, 17, 18, 20,
21, 27, 33, 35, 41, 42, 45, 48, 53, 57, 60, 63, 66, 68, 77, 87, 90 and 96.

The remaining cases where v = 4n — 1 is a prime p (for 2 < n < 100) have
been shown to lead to a single difference set, namely QR(p), by machine
enumeration of the various choices of D as a union of orbits under multiplica-
tion by a multiplier m. This includes the cases n = 26 (multiplier 8), n = 38
(multiplier 19), n = 50 (multiplier 5), n = 78 (multiplier 13), n = 83 (multiplier
83), and n = 95 (multiplier 5). By far, the most difficult case (for the machine)

occurs with n = 38, which required the examination of 37 442 160 combina-
tions of multiplier orbits.
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The case n = 36, also leads by machine enumeration to the single difference
set TP(11,13) of twin-prime type with parameters (143 = 11 - 13,71, 35).

The only other values of n(< 100) for which v = 4n — 1 is not a prime and
a Hadamard cyclic difference set with parameters (4n — 1,2n — 1, n — 1) does
exist are powers of 2. The examples for n = 2,4 and 8 are easily seen to be
unique.

For n = 16, there are 2 isomorphism classes of Hadamard difference sets
with parameters (63, 31, 15): Both have multiplier m = 2, and denoting by X,
the orbit of @ under multiplication by 2 in Z/63Z, they are

Dy=1+X_»x5+X_ o+ X1 +X5+ X+ X5,
which is isomorphic to P°(F,), and
D1=1+X_9+X_1+X1+X3+X9+X25,

which is of type GMW.

The difference sets D, and D; are not isomorphic, even as block designs,
as can be seen by computing the cardinalities of the intersection of triples of
blocks of D;, giving the enumerating polynomial

1058416 + 1965617 + 352818 + 5880¢° + 63¢1°

in contrast to 39060¢7 + 651¢5 for P°(F,). (The coefficient of ¢/ being the
multiplicity of triple intersections of cardinality i.)

For n = 32, L. Baumert and H. Fredricksen have found that there are
exactly 6 non-isomorphic examples. (See [BF].) Three of these, QR(127),
P¢(F,) and MH(127) are members of the classical families.

For n = 64, we have found that there exist exactly 4 examples (up to
isomorphism). One of them is P7(F;), another one is of type GMW. The
other two seem to be new.

All 4 of them have multiplier 2, which is of order 8 modulo v = 255. They
all contain the union U of the multiplier orbits of length < 8, viz.

U= {0} + {85, — 85} + {51,102, — 51, — 102} + {17,34, 68, — 119}
+{—17, — 34, — 68,119} .

Denoting by (ay, ..., a;4) the union Z ’14= X4, of the orbits
X,=1{a,2a,...,27a},

the 4 examples are of the form D; = U + V;, where
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Vo=(-19, =9, -7, —1, 1, 3, 7, 13, 19, 23, 25, 27, 37, 45),
V,=(-43, —27, -25, —13, -9, —5, -3, 7, 11, 13, 19, 23, 27, 43),
V,=(-43, =27, -23, —13, —11, -3, 1, 3, 7, 13, 15, 25, 37, 43),
Vy=(-43, =23, =21, - 11, -7, -3,7,09, 11, 15, 19, 25, 37, 43) .

The difference sets D, and D; appear to be exotic. D, is isomorphic to
P7(F,). Finally, D, is of type GMW, and can be constructed as follows.

Let L = F,5 be the extension of degree 8 over F = F,. We will use the
trace 7r = Try,r: L — F given by Tr(y) = Zzzoyzi. The extension L/F is
defined by the irreducible polynomial x® + x4 + x3 + x?2 + 1 € F[x]. The
multiplicative group F3 is generated by any root a of this polynomial. The
Hall polynomial Dy(x) of D, is then given by

254

Dy(x) = ), dixieZ[x]/(x*5-1),
i=0

where 0 if Tr(a)#0

d; = . .
1 if Tr(a’)=0.

Thus a block of the difference set is the hyperplane ker (7r) C F,56 = Fg

Under the identification
Z/2557 — F3

given by i~ o, the multiplication by 2 in Z/255Z becomes the Frobenius
automorphism in the extension Fps/F,. The block ker(7r) is a union of
orbits under the action of the multiplier.

In order to construct D;, the example of type GMW, we need the inter-
mediate extension K =F; ,FCKCL. Set B = al’, a generator of
K* = F{. Denote by tr = try,r: K — F the trace.

Consider the complementary polynomial Dy(x) = T — Dy(x), where
T = Zfsjox" € Z[x]/(x** —1). The crucial point is to observe that D;(x)
splits as

Dy(x) = Q) - 8o(x"7) € Z[x]/ (x5 - 1) ,
where 0,(y) = Zj.ioajyf with
0 if w@H=0
1 if w@)+0,

and Q(x) = x7 4+ x¥ + .-+ 4+ x%6_ Here,

aj=

00(0) =y +y2+y3 + y4 4+ y6 4 8 4 p9 4 yi2
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Now define
Di(x) = Qx) - 6,:(x'"),

where 8,(y) = 08o(y ~!). Then D,(x) = T — D{(x) is the Hall polynomial of
the difference set D,.

The fact that Dy, D,, D, and D; are not isomorphic, even as block
designs, can again be seen by determining the cardinalities of all triple intersec-
tions of blocks, for each D;. Denoting by P; the corresponding enumerating
polynomial of triple intersections for D;, we have
Py = 27203403 + 10795¢63

Py = 979200¢%° + 823140¢3! + 734400¢3° + 18360023
+ 10200#3° + 595163

P, = 9180¢% + 816072 + 4590012 + 163200728 + 342720¢%
+ 514080¢%° + 518160#3! + 465120132 + 358020¢%
+ 179520234 + 81090¢3% + 1836013¢ + 1836073 + 6120738
+ 3145¢%
Py = 40807% + 14280¢2¢ + 40800¢2" + 142800¢% + 385560¢%
+ 40392013° + 692580¢3! + 424320¢%% + 352920¢33 + 128520¢3%
+ 79050¢3% + 32640736 + 9180737 + 12240¢38 + 7225¢%° + 1020¢% .

TABLE 1

Case vy = +1:
Non-existence of a cyclic difference set
with parameters (2t(t+ 1) + 1,2,3¢(t — 1)) for 3 < t < 100.
(The case ¢ =50 is still undecided.)

t (kN n=k-—Ax reason for non-existence
3 (52, 9, 3) 2 -3 22 = —1mod 5
4 (41, 16, 6) 25 510 = —1 mod 41
5 (61, 25, 10) 3.5 35 = —1 mod 61
6 (5 - 17, 36, 15) 3-7 32 = —1mod 5
7 (113, 49, 21) 22 -7 77 = —1 mod 113
8 (5 - 29, 64, 28) 22 . 32 214 = —1 mod 145
9 (181, 81, 36) 32 5 = 3% mod 181 would be multiplier
10 (13 - 17, 100, 45) 511 52 = —1 mod 13
11 (5 - 53, 121, 55) 2-3-11 22 = —1mod 5
12 (3 - 13, 144, 66) 2313 2 = —1 mod 313
13 (5- 73, 169, 78) 7 - 13 72 = —1mod 5
14 (421, 196, 91) 357 515 = _ 1 mod 421
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TABLE I (continued)

W, k,\) n=%k-»x reason for non-existence
(13 - 37, 225, 105) 23-3-5 52 = —1 mod 13

(5 - 109, 256, 120) 23 - 17 172 = —~1mod 5
(613, 289,136) 32 .17 17! = —1 mod 613
(5 - 137, 324, 153) 3219 19 = —1mod 5
(761, 361, 171) 2-5-19 219 = —1 mod 761
(292, 400, 190) 2-3-5-7 24 = —1 mod 29
(52 - 37, 441, 210) 3-7-11 32 = —1 mod 5
(1013, 484, 231) 11 - 23 118 = —1 mod 1013
(5 - 13 - 17, 529, 253) 22 -3 .23 32 = —1 mod 5
(1201, 576, 276) 22 -3 .52 3150 = —1 mod 1201
(1301, 625, 300) 52 .13 5325 = —1 mod 1301
(5 - 281, 676, 325) 33 .13 132 = —1mod 5
(17 - 89, 729, 351) 2-33.7 24 = —1 mod 17
(53 - 13, 784, 378) 2-7-9 22 = —1mod 5
(1741, 841, 406) 3-5-29 345 = —1 mod 1741
(1861, 900, 435) 3-5-31 3135 = —1 mod 1861
(5 - 397, 961, 465) 24 - 31 222 = —1 mod 1985
(2113, 1024, 496) 243 - 11 322 = —1 mod 2113
(5 - 449, 1089, 528) 3-11-17 32 = -1 mod 5
(2381, 1156, 561) 5-7-17 5119 = —1 mod 2381
(2521, 1225, 595) 2-32-5:7 2630 = _1 mod 2521
(5 - 13 - 41, 1296, 630) 23237 22 = —1mod §

(29 - 97, 1369, 666) 19 - 37 1914 = —1 mod 29
(5 - 593, 1444, 703) 3-13-19 32 =.—1mod 5
(3121, 1521, 741) 22-3:5-13 27 = —1 mod 3121
(17 - 193, 1600, 780) 22 -5 - 41 58 = —1 mod 17

(5 - 13 - 53, 1681, 820) 3741 32 = —1 mod 5
(3613, 1764, 861) 3-7-43 3903 = _—1 mod 3613
(5 - 757, 1849, 903) 211 - 43 22 = —1mod 5

(17 - 233, 1936, 946) 2-32-5-11 24 = —1 mod 17
(41 - 101, 2025, 990) 32..5 .23 510 = —1 mod 41
(5% - 173, 2116, 1035) 23 - 47 232 = —~1mod 5
(4513, 2209, 1081) 23 -3 - 47 3188 = _ 1 mod 4513
(5 - 941, 2304, 1128) 23 .3 .72 32 = —1mod 5
(132 - 29, 2401, 1176) 3% . 2 52 = 7% mod 4901 would be multipli
(5101, 2500, 1225) 3-52.17 existence unsettled

(5 - 1061, 2601, 1275) 2-3-13-17 22= —1mod5

(37 - 149, 2704, 1326) 213 - 53 218 = —1 mod 37
(52 - 229, 2809, 1378) 33. 53 532 = —1mod 5
(13 - 457, 2916, 1431) 33 -5 - 11 52 = —1 mod 13
(61 - 101, 3025, 1485) 225711 55 = —1 mod 61

(5 - 1277, 3136, 1540) 22-3-7-19 32= —1mod 5

(17 - 389, 3249, 1596) 3-19-29 33 = —1 mod 17
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TABLE 1 (continued)

t W,k n=k-—» reason for non-existence
58 (5 - 372, 3364, 1653) 29 - 59 29 = —1mod S

59 (73 - 97, 3481, 1711) 2-3-5-59 3¢ = —]1 mod 73

60 (7321, 3600, 1770) 2-3:-5-61 2610 = _—1 mod 7321
61 (5 - 17, 3721, 1830) 31 - 61 313 = —1 mod 17

62 (13 - 601, 3844, 1891) 32.7 .31 76 = —1 mod 13

63 (5 - 1613, 3969, 1953) 25 -32.7 72 = —1 mod 5

64 (53 - 157, 4096, 2016) 25 -5-13 526 = —1 mod 53

65 (8581, 4225, 2080) 3.-5-11-13 3715 = —1 mod 8581
66 (5 - 29 - 61, 4356, 2145) 3-11- 67 32 = —1mod 5

67 (13 - 701, 4489, 2211) 217 - 67 26 = —1 mod 13

68 (5 - 1877, 4624, 2278) 2-3-17 - 23 22 = —1mod §

69 (9661, 4761, 2346) 3.-5-7-23 72415 = _1 mod 9661
70 (9941, 4900, 2415) 5-7-171 72485 = —1 mod 9941
71 (52 - 409, 5041, 2485) 22 .32.17] 2510 = —1 mod 10225
72 (10513, 5184, 2556) 22 .32 .73 21314 = _ 1 mod 10513
73 (5 - 2161, 5329, 2628) 37 - 73 372 = —1mod 5

74 (17 - 653, 5476, 2701) 3-52.137 38 = —1 mod 17

75 (13 - 877, 5625, 2775) 2-3:-52-19 26 = —1mod 13

76 (5 - 2341, 5776, 2850) 2-7-11-19 22 = —1mod 5§

77 (41 - 293, 5929, 2926) 3-7-11-13 34 = —1 mod 41

78 (52 - 17 - 29, 6084, 3003) 3 - 13 - 79 32 = —1 mod 5

79 (12641, 6241, 3081) 23-5-179 51580 = _1 mod 12641
80 (13 - 997, 6400, 3160) 23 .34.5 52 = —1 mod 13

81 (5 - 2657, 6561, 3240) 34 - 41 41332 = —1 mod 2657
82 (13613, 6724, 3321) 41 - 83 41 = 833 mod 13613 would be multipl
83 (5 - 2789, 6889, 3403) 2-3-7"-83 22 = —1mod 5

84 (14281, 7056, 3486) 2-3-5-7-17 219 = _1 mod 14281
85 (14621, 7225, 3570) 517 - 43 53655 = —1 mod 14621
86 (5 - 41 - 73, 7396, 3655) 3-29-43 32 = —1mod 5

87 (15313, 7569, 3741) 22-3-11-29 31276 = _1 mod 15313
88 (5 - 13 - 241, 7744, 3828) 22 - 11 - 89 89 = —1mod 5

89 (37 - 433, 7921, 3916) 32.5-89 518 = —1 mod 37

90 (16381, 8100, 4005) 32.5-7-13 13 = —1 mod 16381
91 (5 - 17 - 197, 8281, 4095) 2 -7 -13 - 23 22 = —1mod 5

92 (109 - 157, 8464, 4186) Z-3*23 - 3l 218 = —1 mod 109

93 (5 - 13 - 269, 8649, 4278) 3 - 31 - 47 32 = —1 mod 5

94 (53 - 337, 8836, 4371) 5-19 - 47 526 = —1 mod 53

95 (17 - 29 - 37, 9025, 4465) 24-3-5-19 38 = —1 mod 17

96 (53 - 149, 9216, 4560) 24 -3 .97 32 = —1 mod 5

97 (19013, 9409, 4656) 72 - 97 74733 = —1 mod 19013
98 (5 - 3881, 9604, 4753) 32.72 .11 117 = —1 mod 3881
- 99 (19801, 9801, 4851) 2-32.52.11 240 = _1 mod 19801
100 (20201, 10000, 4950) 2 - 52101 25050 = _1 mod 20201 §
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TABLE 11

Casey = —1:
Cyclic difference sets with parameters (4n—1,2n—1,n—1),2 < n < 100

n @4n-1,2n-1,n-1)  exists? examples or comment to non-existence

(7, 3, 41)

2 Yes P2(F,) = QR(7)
31,5, 2) Yes OR(11)

4 357,73 Yes TP(@3, 5) = P3(F,)

5 (19, 9, 4) Yes OR(19)

6 (23, 11, 5 Yes OR(23)

7 (33, 13, 6) No 7 would be multiplier
8 (31, 15, 7) Yes P*(F,) and OR(31)

9 ¢S -17,17, 8) Yes TP(5, 7)

10 3-13,19,9 No 2 = —1mod 3

11 (43, 21, 10) Yes OR(43)

12 47, 23, 11) Yes QOR47)

13 (3 - 17, 25, 12) No 132 = —1 mod 17

14 ¢ - 11, 27, 13) No 22 = —1 mod 5

15 (59, 29, 14) Yes OR(59)

16 (3% -7, 31, 15) Yes P°(F,) and GMW

17 (67, 33, 16) Yes OR(67)

18 (71, 35, 17) Yes OR(71)

19 (3 - 52, 35, 18) No 19 = -1 mod 5

20 (79, 39, 19) Yes OR(79)

21 (83, 41, 20) Yes OR(83)

22 (3 - 29, 43, 21) No 2 = —1 mod 3

23 (7 - 13, 45, 22) No 233 = —1 mod 13

24 (5 - 19, 47, 23) No 32 = —1mod 5

25 (32 - 11, 49, 24) No 25 would be multiplier
26 (103, 51, 25) Yes QOR(103)

27 (107, 53, 26) Yes QOR(107)

28 (3 - 37,55, 27 No m =7 = 23 would be multiplier
20 (5 - 23, 57, 28) No 29 = —1 mod $

30 (7 - 17, 59, 29) No 24 = —1 mod 17

31 (3 - 41, 61, 30) No 315 = —1 mod 41

32 (127, 63, 31) Yes PS(F,), QR(127), MH(127), and 3 others
33 (131, 65, 32) Yes OR(131)

34 (33 -5, 67, 33) No 17 = —1 mod 3

35 (139, 69, 34) Yes OR(139)

36 (11 - 13, 71, 35) Yes TP(11, 13)

37 (3 - 72, 73, 36) No 37 would be multiplier
38 (151, 75, 37) Yes OR(151)

39 (5 - 31, 77, 38) No 32 = —1mod 5
40 3 53,79, 39 No S5 = -1 mod3
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43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
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4n—-1,2n—-1,n-1)

(163, 81, 40)
(167, 83, 41)
(3% - 19, 85, 42)
(5% - 7, 87, 43)
(179, 89, 44)

(3 - 61, 91, 45)
(11 - 17, 93, 46)
(191, 95, 47)

3 -5 - 13,97, 48)
(199, 99, 49)

(7 - 29, 101, 50)
(3% - 23, 103, 51)
(211, 105, 52)

(5 - 43, 107, 53)
3 - 73, 109, 54)
(223, 111, 55)
(227, 113, 56)

(3 -7 - 11, 115, 57)
(5 - 47, 117, 58)
(239, 119, 59)
(3%, 121, 60)

(13 - 19, 123, 61)
(251, 125, 62)

3 -5 - 17, 127, 63)
(7 - 37, 129, 64)
(263, 131, 65)

(3 - 89, 133, 66)
(271, 135, 67)
(5% - 11, 137, 68)
(32 - 31, 139, 69)
(283, 141, 70)

(7 - 41, 143, 71)
(3 - 97, 145, 72)
(5 - 59, 147, 73)
(13 - 23, 149, 74)
(3 - 101, 151, 75)
(307, 153, 76)
(311, 155, 77)
(3%2-5-17,157,178)
(11 - 29, 159, 79)
(17 - 19, 161, 80)
(3 - 109, 163, 81)

TABLE 2 (continued)

exists?

Yes
Yes
No
No
Yes
No
No
Yes
No
Yes
No
No
Yes
No
No
Yes
Yes

Yes

No
No
No
No
Yes
Yes
No
No
Yes
No

examples or comment to non-existence

OR(163)

OR(167)

43 would be multiplier

m = 11 = 2°° mod 175 would be multiplier
OR(179)

23 = —1 mod 3

472 = —1 mod 17

OR(191)

7 would be multiplier
OR(199)

33 = —1 mod 7

13 would be multiplier
ORQ11)

22 = —1mod 5

5= —1mod3

OR(223) and MH(223)
OR(227)

2= —1mod3

59 = —1 mod 5

OR(239)

61 would be multiplier

26 = —1 mod 13

OR(251)

P’7(F,), GMW and 2 new ones
53 = —1 mod 7

OR(263)

67 would be multiplier
OR(271)

32 = —1mod 5

2 = —1mod3

OR(283) and MH(283)

m =9 = 2% = 32 mod 287 would be multiplier
7312 = —1 mod 97

22= —1mod>5

m = 33 = 5% mod 299 would be multiplier
m = 19 = 2% mod 303 would be multiplier
OR (307)

OR(311)

79 = —1 mod 5

57 = —1 mod 29

TP(17, 19)

2 = —1mod3
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TABLE II (continued)

n (4n—1,2n-1,n—1)  exists? examples or comment to non-existence

83 (331, 165, 82) Yes OR(331)

84 (5 - 67, 167, 83) No 32 = -1 mod 5

85 (3 - 113, 169, 84) No 5= —1mod3

86 (73, 171, 85) No m = 43 = 2% mod 343 would be multiplier

87 (347, 173, 86) Yes OR(347)

88 (3% - 13, 175, 87) No 11 = —1 mod 3

89 (5 - 71, 177, 88) No 80 = —1mod 5

90 (359, 179, 89) Yes OR(359)

91 (3 - 112, 181, 90) No 75 = —1 mod 11

92 (367, 183, 91) Yes QR ((367)

93 (7 - 53, 185, 92) No 33 = —1 mod 7

94 (3 - 53,187, 93) No 2 = —1mod3

95 (379, 189, 94) Yes OR(379)

96 (383, 191, 95) Yes OR(383)

97 (3% - 43, 193, 96) No 97 would be multiplier

98 (17 - 23, 195, 97) No 24 = —1 mod 17

99 (5 - 79, 197, 98) No 11 = 3% mod 395 would be multiplier

100 (3 -7-19,199,99) No 4 = 22 = 58 mod 399 would be multiplier
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