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334 T. TSUBOI

This foliation restricted to 7"-! x [—1, 1] induces a foliation of 7T/ % Tn-1-i
which is
T} [-1,11/(T!x Tr-1-ix{—-1}~Tix{-1},
Tix Tr-l-ix {1} ~Tr"1-ix{1}).
Note that there is a degree one map from the suspension of 77! to
T Tr-1-i Since we can embed T"-! X [—1, 1] in S”, we have a degree

one map from S” to the suspension of T7-!, hence to T * T"~ 1~ Thus
Hurewicz map is surjective.

§3. HOMOLOGY OF THE GROUP OF PIECEWISE LINEAR HOMEOMORPHISMS

Let PL.(R) denote the group of piecewise linear homeomorphisms of R
with compact support. Let p:PL.(R) X PL.(R) = PL.(R) be the com-
position of two isomorphisms PL.(R) = PL.((—o,0)) and PL.(R)
= PL.((0, o)), and the inclusion

PL.((—,0)) x PL:((0, )) = PL.(R) .

Then p induces a product * on the homology of BPL.(R)? ([10]).
The homology of the group PL.(R) of piecewise linear homeomorphisms
of R with compact support is described as follows. For positive integers i
and j, put L
Vij = RA ®QR/\j
i j

THEOREM (3.1).

H,(BPL,(R)%;Z) = Y VFk ®q... QqVFkks |
where the sum is taken over even number of positive integers
ki ki, ..,k k)
such that k[ + k| + ...+ k, + k7 = m. Moreover, the *-product
#: H;(BPL.(R)®; Z) X H;(BPL.(R)%;Z) — H; ;(BPL.(R)%;Z)

coincides with the tensor product.
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For small dimensions, this theorem says that

H,(BPL.(R)%;Z) = 0,

H,(BPL.(R)®;Z) = R ®qR,

H;(BPL.(R)>; Z) = RAqR) ®qR ® R ®(RAR), and

H,(BPL.(R)*; Z) = R AqRAqR) ®qR @ (RAqR) ®o (RAQR)
®R®eRAQRAQR) DR ®eR®qR®R .

The first homology group is 0 is equivalent to that PL.(R) is perfect and
this is due to Epstein ([1]). The second and third homologies are given explicitly
by Greenberg ([7]). The summand R ®oR ®¢ R ®¢R of H,;(BPL.(R)%;Z)
is the image of the *-product on H,(BPL.(R)®; Z) and since the *-product
coincides with the tensor product, the *-product is not graded commutative.
This implies that the Whitehead product

n3(BITTY) X 13 (BTFH) - s (BT1H)

is highly nontrivial and this is the obstruction to construct a foliation on
S3 x 83 with given Godbillon-Vey class. In this way, as in mentioned in §2,
this is related to the rationality (see [10]).

Theorem (3.1) is also obtained as an application of the description by
Greenberg ([7]) of the classifying space Bl:f L. As we mentioned, his result
says that this classifying space is weakly homotopy equivalent to the join
BR3x BR®, To show Theorem (3.1), we use the isomorphism

H,(BPL.(R)%; Z) = H,(QBT{"; Z)

due to Mather ([9]) adapted for the PL case by Ghys-Sergiescu ([5]) and

Greenberg ([7]) using a result of Segal ([11]), and the homology spectral
sequence associated to the fibration

QBT?: — pPBT Pt — BIP-
Since BT!* is simply connected, the E2 term of this spectral sequence is as
follows.

E,, ,=H, (BUT";7) ®¢ H,(QBT™; Z) .
Note that H4(BT't";Z) is torsion free. From this, Greenberg obtained the

second and the third homologies ([7]). To show our theorem, we show that,
for p > 0,

2 _ 2 _ _ D

EpH,q—ZpH’q—...—ZpH,q and
p+1l g _ . p®™ _ _ n2
Zp+1,q - Zp+1,q = 0 = Bp+1,q e Bp+1,q .
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This is equivalent to that the differentials induce an isomorphism

¥ H,, (BT ;7Z) ® o H,(QBT;Z) - H,, ,(QBT™; 7).

p+tgq=m,p>0

To show this we define the cohomology classes of BPL, (R)® which detect the
images of generators of H,, ;(BI'{";Z) ® o H,(QBT"; 7).

§4. CONSTRUCTION OF COCYCLES OF THE GROUP PL.(R)

Tensor determinants. We define a determinant of an (n X n) real matrix
which takes values in the tensor product over Q of n copies of R. For

(@i)ij=1,..n» WE put

det®Q(aij) = Z sign(o) as1y1 ®q --- ®Q Asmyn -

For example,

® ay dap
det ®eo . 4 =ay; gy — a1 Xgdaiz -
21 a2

We have the usual multilinearity but we do not have the usual alternativity.
For example,

a
det®a
a

b) =0 but det®e (a a) =a®ob—b®ga=aNgb.
b b b

The latter is not necessarily zero. In general, if we change the rows then this
determinant changes sign, however, there are no simple laws for changing
columns. It is worth noticing that we have the usual formula of developing
with respect to the first or the last column.

det®e(a;) = Y, (—1)i*la; ®qdet®e(4;)

i+1

= E (—1)i+ndet®Q(Ain) ®Qain ’
i+1

where A;; is the matrix (a;;) with the i-th row and the j-th column deleted.

Cocycles of Lipschitz homeomorphism groups. We review the construc-
tion of cocycles of certain Lipschitz homeomorphism groups of the real line
or the circle (see [13]). Let & be the space of functions with compact support
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