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334 T. TSUBOI

This foliation restricted to Tn~1 x [- 1, 1] induces a foliation of Tl* Tn~x~i
which is

T"~l x [-1, l]/(rf x P"-1-' x { -1} ~ T' x { -1}
Ti x r*-1-*' x {1} ~ Tn~l^t x {1})

Note that there is a degree one map from the suspension of Tn~l to
7'/* Since we can embed Tn~x x [-1,1] in S", we have a degree

one map from S" to the suspension of Tn~l, hence to T'* Thus
Hurewicz map is surjective.

§3. Homology of the group of piecewise linear homeomorphisms

Let PLC(R) denote the group of piecewise linear homeomorphisms of R
with compact support. Let p : PLC(R) x PLC(R) -> PLC(R) be the

composition of two isomorphisms PLC(R) PLC((- oo, 0)) and PLC(R)
PLc((0, oo)), and the inclusion

PLC({- oo, 0)) x PLc((0, oo)) - PLC(R)

Then p induces a product * on the homology of BPLC(R)6 ([10]).
The homology of the group PLC(R) of piecewise linear homeomorphisms

of R with compact support is described as follows. For positive integers i
and j, put

ViJ RAi ®qRaJ
i j

(R Aq Aq R) (x) q (R Aq Aq R)

Theorem (3.1).

Hm(BPLc{R)«;Z)£ ®Q... ®Q

where the sum is taken over even number of positive integers

such that k{ + k^+ + k~ + k* Moreover, the

*:Hi{BPLc{R)6;Z) X Hj(BPLc{R)8;Z)R)8;Z)

coincides with the tensor product.
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For small dimensions, this theorem says that

HX{BPLC(R)8;Z)sO,

H2(BPLc(R)6;Z) s R®qR
H3 (BPLC(R)5; Z) (R AQ R) ® q R © R ® q (R AQ R), and

Ha BPLC(R)5; Z) s (R AQ R Aq R) ® q R © (R Aq R) ® Q (R AQ R)

©R®q(RAqRAqR)©R®qR®QR®QR •

The first homology group is 0 is equivalent to that PTC(R) is perfect and

this is due to Epstein ([1]). The second and third homologies are given explicitly

by Greenberg ([7]). The summand R ®qR ®qR ®qR of H4(BPLc(K)i", Z)
is the image of the »-product on H2(BPLR)S;Z)and since the »-product
coincides with the tensor product, the »-product is not graded commutative.

This implies that the Whitehead product

TiiiBr1;1) x n3(Bff)- ju(ßrf'
is highly nontrivial and this is the obstruction to construct a foliation on
S3 x S3 with given Godbillon-Vey class. In this way, as in mentioned in §2,

this is related to the rationality (see [10]).
Theorem (3.1) is also obtained as an application of the description by

Greenberg ([7]) of the classifying space i?ffL. As we mentioned, his result

says that this classifying space is weakly homotopy equivalent to the join
BR6* BR6. To show Theorem (3.1), we use the isomorphism

H*(BPLC(R)6; Z) //*(Q£ffL; Z)

due to Mather ([9]) adapted for the PL case by Ghys-Sergiescu ([5]) and

Greenberg ([7]) using a result of Segal ([11]), and the homology spectral
sequence associated to the fibration

Q.BÏf PBTfL -+ BTfL

Since #ffL is simply connected, the E2 term of this spectral sequence is as

follows.

E2p+ UV H„ + ,(5f fL; Z) ®0 ; Z)

Note that TGfßf ; Z) is torsion free. From this, Greenberg obtained the
second and the third homologies ([7]). To show our theorem, we show that,
for p ^ 0,

Ep + 1 ,q — %p+\,q m ~ ^p+l,q an<^

7"P+l _ y°° A D00 _ _ p2^p+ Uq ~ ^p+l,q ~ U np+Uq ~ Dp+\,q '
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This is equivalent to that the differentials induce an isomorphism

I Hp+l(Bff; Z) 0 q (Qßf ; Z) - + Z)
p + q m,p ^ 0

To show this we define the cohomology classes of BPLC{R)5 which detect the
images of generators of Hp+1(Bf^L; Z) (x)Q//^(QJßffL; Z).

§4. Construction of cocycles of the group PLc(R)

Tensor determinants. We define a determinant of an (« x «) real matrix
which takes values in the tensor product over Q of n copies of R. For

(flu)ij I,...,*, we put

det®Q(a/y) £ sign(o) aail)l (x)Q... <g)Qao(#I)/I
a

For example,

det®Q I
" 0121 a„ 0q«22 - Û2i 0Qßi2 •

\#21 #22/

We have the usual multilinearity but we do not have the usual alternativity.
For example,

det®Q
a

| 0 but det®Q I j a ®Qb - b (g)Qa a AQb
a b *G

The latter is not necessarily zero. In general, if we change the rows then this

determinant changes sign, however, there are no simple laws for changing
columns. It is worth noticing that we have the usual formula of developing
with respect to the first or the last column.

det®Q(ßy) Yj (—l),+ 1a<i 0Qdet®Q(4n)
i + 1

i (- 1)' +"det®Q(Ain)0q«;„
i + 1

where Atj is the matrix (a/y) with the z-th row and the y-th column deleted.

Cocycles of Lipschitz homeomorphism groups. We review the construction

of cocycles of certain Lipschitz homeomorphism groups of the real line

or the circle (see [13]). Let be the space of functions with compact support
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