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30 J. OPREA

5. If M?" is a simply connected compact symplectic manifold, then
1
cat(M) = n = 7 dim(M). (First, observe that the volume form is not exact

since it represents a nontrivial fundamental class of M. Because ow”/n! = vol
(see [1], p. 165), the nondegenerate closed 2-form ® cannot be exact either.
Hence, " represents a nontrivial cup-product of length » in R-cohomology.
By property (4) above, cat(M) < (dimM)/2 = n. Hence,

1
n < cup(M) < cat(M) < 5 dimM = n
and the result follows.)

§2. RATIONAL HOMOTOPY AND CATEGORY

The basic reference for this section is [3]. To each space X, Sullivan
functorially associated a commutative differential graded algebra (A4 (X), d) of
rational polynomial forms possessing the salient property that integration
'defines a natural algebra isomorphism between H*(A4(X), d) and H*(X; Q).
Furthermore, the cdga A (X) was shown to contain all the rational homotopy
information about X; information which may be gleaned from an associated
cdga minimal model of A(X).

A cdga (A, d) is minimal if (1) A = AX, where X = @;. (X' is a graded
Q-vector space and AX denotes that A is freely generated by X; that is,
AX = Symmetric algebra (X¢°) & Exterior algebra (X°4). (2) There is a
basis for X, {X}qes, so that if I'is well ordered by <, then dxg € A, _g(xs)
- AJ <p(Xo). That is, A is constructed by stages and the differentials of B
stage generators are decomposable in the generators of previous stages.

A minimal model for a space M is a minimal cdga A(M) and a cdga map
A(M) = A(M) inducing an isomorphism in cohomology. The fundamental
theorem of rational homotopy theory is then (see [4] for example).

THEOREM. Each space M has a minimal model A(M) and, further-
more, for nilpotent spaces the stage by stage construction precisely mirrors the
rational Postnikov tower with the differential corresponding to the k-invariant.

Recall that a space M is nilpotent if its fundamental group m;(M) is a
‘nilpotent group and the natural action of m;(M) on n,(M) (see [10]) is a
nilpotent action (see [12]). In particular, any simply connected space or any
K(m, 1) with  nilpotent is a nilpotent space. The theorem then says that, for
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a nilpotent space, the minimal model is a perfect reflection of the rational
homotopy type of the space (eg for i > 1, X' = Hom(n;(M), Q), where
n;(M) is the it homotopy group of M). The minimal model A(M) is
therefore an algebraic version of the Q-localization of M. Indeed, a notion of
cdga homotopy may be described so that there is a categorical equivalence
between the homotopy categories of rational nilpotent spaces and minimal
cdga’s.
Examples. (1) A(S?"*1) = A(Xy,+1),dx = 0.
(2) A(S?") = A(X2n, Yan-1), dy = X°.
(3) A(CP(n) = A(xz,Yan41), dy = x"+1.
4 A(T") = A@xy,x3, - +,x7),d = 0.
In the next setion we will describe the minimal model of a nilmanifold in
terms of the structure of its defining nilpotent group.
In order to understand category in the framework of minimal models,
assume for the moment that cat(M) = m. The Whitehead diagram

M A Mm+1
(*) AT Tj

Tm+1(M)

translates (via Sullivan’s categorical equivalence) into a homotopy
commutative diagram of minimal cdga’s,

AX “« (AX)®m+1
(+%) 0 le

AY

where A(M) = AX, A(M™+') = (AX)®7+! (since the model of a product is
the tensor product of the models), A is modelled by the (m + 1)-fold multiplica-
tion p and AY = A(T"+1(M)).

Now, however, we may make the following

Definition. The rational category of M (or A(M) = AX), caty(M), is
the least m so that (+*) exists; that is, there exists p with pg = .

Observe that: (1) cato(M) < cat(M) since any diagram (*) induces a
diagram (*x). (2) If M is simply connected, then cato(M) = cat(M,), where
M, is the Q-localization of M. This follows since (*) itself localizes.
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The definition of caty(M) would be of little use if this were its only
description. The passage from () to (**) simply transfers the difficult problem
of obtaining A’ to an (almost) equally difficult problem of obtaining p.
 However, by understanding the nature of AY = A(T™*! (M)), a more
accessible criterion for cato(M) may be developed. We first describe AY.

PROPOSITION (2.2 of [3]). A minimal model for the fat wedge is given by
a minimal model ¢: AY — Q for the quotient cdga

Q= (AX)®m+l/(A+X)®m+l

where A*X consists of all elements of positive degree. Moreover, if
n: (AX)®m+1 > Q s the projection, then any mn:(AX)®"+1 > AY with
on = n is homotopic to the induced map E&.

(The existence of 1 is a consequence of the minimality of (AX)®”*1 the
fact that ¢ induces an isomorphism of cohomology and cdga obstruction
theory. See [4] or [6].)

In some sense, the form of Q is exactly what one would expect viewing the
 fat wedge as a spatial bound on the ‘“form product’’ length (as opposed to
cuplength). The proof of the proposition relies on various technical results
involving A(T™+1(M)).

Now let A>™X denote the differential ideal of AX having additive basis
the monomials Xx; ---x;, with k> m. Consider the projection
p: AX - AX/A>"X and a minimal model 6: AZ - AX/A>"X. As before
(for AY), minimal model theory provides a lift of p, p: AX — AZ, with
Op = p.

Say that AX is a retract of AX/A>mX if there exists a cdga map
r: AZ - AX with rp = 1,x.

We are now in a position to give the rational homotopy criterion for
- category. We give a proof in one direction and refer to [3] for the other. (Also,
we make use of the fact that a cohomology isomorphism 6: 4 — B induces
bijections of cdga homotopy sets 0,: [A, A] > [A, B] for any minimal A.)
With the notation above, we have the

THEOREM. cato(M) < m if and only if AX = A(M) is a retract of
AX/A>mX.

Proof. We only prove the ‘‘if”’ part. Let r denote the retraction,
'AZ - AX, with rp = 1,x. We have the following homotopy commutative
' diagram (where p is the map induced by p and p is a lift to models),
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AX -— (AX)®m+.1

Ip In

~ AX 5 (AX)®mH!

P\ aox T aaxen | °
=18 =T1¢
ANZ :LL AY

In order to prove caty(M) < m, we must find p: AY - AX with p§ = p. We
can use the given retraction to do exactly this. Let p = ru.

First, observe Opp = pu = pun = pdpf = 0u&. Because 0 is a cohomology
isomorphism, pu = pk.

Now, p& = rué = rpp = 1axp = p and we are done. [

Of course, cato(M) is, in general, too hard to compute. However, the
criterion we have described opens up the possibility of defining weaker
invariants which are computable. In a sense, the point of this paper is to give
an exposition of these weaker invariants in the context of a specific problem
of interest to ‘‘geometers’’.

Define ey(M) to be the least integer s so that p: AX - AX/A>sX
induces an injection in cohomology. (This is, in fact, equivalent to requiring
r: AZ - AX to be only a linear retraction. The invariant e,(M) was first
defined by Toomer [9] in terms of the Milnor-Moore spectral sequence.)

Note that if r; AZ = AX is a retraction, then p* is injective and (since 0*
i1s an isomorphism) therefore so is p*. Hence, we clearly have

eo(M) < cato(M) .

Moreover, when M is a nilpotent space (so that the full power of the minimal
model may be utilized) and a manifold (so that Poincaré duality may be
exploited), we can identify e,(M) in the following manner:

PROPOSITION. If M" is a nilpotent manifold with fundamental class

T e H'(M;Q), then ey(M) is the largest k such that 7t is represented
by a cocycle in A>*X.

Proof. Let eo(M) = s and let k be defined by the stated property. If 7 is
represented by a cocycle in A>sX, then (for p: AX = AX/A>sX)p*(t) = 0
and p* is therefore not injective. Hence, k < s.
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: In order to show the reverse inequality s < k, we must show that, for
p:AX > AX/A>*¥X, p* is injective. Plainly, by Poincaré duality, p* is
-injective if and only if p*(t) # 0. Hence, we prove this.

Suppose p*(t) = 0. Let T denote the representing cocycle in A >4X of the
' fundamental class 1. Let p(t) = T € AX/A>*X and consider T as an element
in A<tX. Now, p*(t) = 0, so there exists o € AX/A>*X with dao = 1.
Consider a € A<4X as well and note that p(da) = da = 7. Therefore, in
AX

dao =1+ ®, where ® e A>kX .
Similarly, of course, T = T + Q for Q € A>*X and we obtain,
T=1T+Q=da—-®+Q

with Q — ® € A>*X. But this means T is cohomologous to Q — ® € A>kX,
contradicting the definition of k. [

§3. NILMANIFOLDS

A nilmanifold M is the quotient of a nilpotent Lie group N by a discrete
cocompact subgroup ©. The description below follows [7].
It is well known that N is diffeomorphic to some R” and, therefore, M is
a K(m,1). Furthermore, this entails the fact that m is a finitely generated
torsionfree nilpotent group.
| On the algebraic side, there is a refinement of the upper central series of T,

M2M2M32 " 2N, 21

with each n;/m;,, = Z whose length is invariant and is called the rank of
1. So, for m above, rank(n) = n.

‘ This description implies that any we€emn has a decomposition
u=uy" - ur, where {u,) = n,, - {u;) = n;/m;,. The set {uy, - u,}
is called a Malcev basis for m. Using this basis the multiplication in 7 takes

' the form

u)lcl .. u)’;nu)l’l e ui’ln — unln(x,y) uﬁn(x’-}’)

where

P, y) =X+ yi + 0, Xim, V1, Vi) -
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