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332 T. TSUBOI

YXZ->0XX QXS Qx.

Then this represents u*v € H,,,(QX;Z). On the other hand, the com-
position

YXZ->QX X QX ->PX X QX > X x QX

bounds SY X Z - PX x QX — X x QX, which represents s(x) ® v. Hence
s(u) ® v and u = v are related under 97+!,

§2. DISCONTINUOUS INVARIANTS

First we review the definition by Morita ([10]) of discontinuous invariants
arising from the Godbillon-Vey invariant for codimension one foliations.

Let .%¥ be a codimension one foliation of a closed oriented 3k-dimensional
manifold M. Then the Godbillon-Vey class gv(¥%) € H*(M;R) is defined
([eD. Let {x;, ..., x,} be a basis of H3(M; Q). Then gv(.¥) is written as

gu(F) =aix; + ... + a,x,,
where a,, ..., a, € R. The discontinuous invariant GV} is defined by

k
GVk(y)Z E (x,-lu...ux,-k)[M] a,-l/\Q.../\QaikeR’\kzR/\Q.../\QR,

<.y

where [M] € H;,(M; Z) is the fundamental class. Morita showed that GV is
natural, GV, depends only on the foliated cobordism class of .#, and hence
there is a universal map GVy: H;,(BI';; Z) = R** ([10]).

The same argument applies to transversely piecewise linear foliations and
the discrete Godbillon-Vey class defined in [5] and [3]. Then the following
theorem is obtained from the description by Greenberg ([7]) of the classifying
space for them and Lemma (1.1).

THEOREM (2.1). Let % be a codimension one transversely orientable
transversely piecewise linear foliation of a closed oriented 3k-dimensional
manifold Mk >2). Then GV (%) =0.

Proof. The weak homotopy type of the classifying space BT'PZ for
codimension one transversely oriented transversely piecewise linear foliations
is known by Greenberg ([7]). This classifying space BI'** has the weak
homotopy type of the join BR?® * BR?3 of two copies of BR? = K(R, 1). Let
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gv denote the discrete Godbillon-Vey class defined as a 3-dimensional cohomo-
logy class of this classifying space ([5], [3])-

gv € H3(BTT:; R) .

By Lemma (1.1), the higher discontinuous invariants GV, are trivial in this
classifying space BFfL. Hence by the naturality of GV, GV, (¥) = 0.

COROLLARY (2.2). Let % be a codimension one transversely piecewise
linear foliation of S3 X S*. GV(¥) = (a,b) € H*(S* x §3,R) satisfies
a/b e QU {x}.

Proof. 0= GV,(¥) =aAqb. Hence a/b € Q U {}.

Remark. Morita translated the question of rationality into that of graded
commutativity of *-product defined on the homology of the group of
diffeomorphisms of R with compact support ([10]). In the later sections, we
calculate the homology of the group PL.(R) of piecewise linear homeo-
morphisms of R with compact support as well as the *-product structure. We
see that the *-product is certainly not graded commutative, which insures the
rationality. The argument on the rationality of transversely piecewise linear
foliations uses the fact that the Godbillon-Vey invariant localizes on
transversely discrete sets and this argument cannot be generalized for smooth
foliations for the moment. See how the class C?l, 11,1y €xists in §3. We also
see that the Whitehead product of elements of n,(BIT'7*) which are not zero
in homology is usually nontrivial and has infinite order.

Remark. The Hurewicz map
n,(BT %) -» H,(BT'*; Z)
is surjective. To see this, note first that by Greenberg ([7]),

_ n—1
H,BT{";Z)= ) RN@qRM-1-1,
i=1
An element (a1 Aqg-.-No a,-) ®Q (b,‘+1/\Q ...N\g bn—l) e R~ ®Q RAn-1-i 4g
represented by the following foliation of 77/ 7"-1-i Consider the foliated

R-product with noncompact support over 7"~! such that the holonomy
h:m (T"-') - PL(R) is given by

h(e;) (x) = e%ix for x <0 and h(e;)) (x) = xfor x >0if j=1,...,i
h(e;) (x) =x for x<0 and h(e;) (x) =ebix for x>0if j=i+1,....n—1.
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This foliation restricted to 7"-! x [—1, 1] induces a foliation of 7T/ % Tn-1-i
which is
T} [-1,11/(T!x Tr-1-ix{—-1}~Tix{-1},
Tix Tr-l-ix {1} ~Tr"1-ix{1}).
Note that there is a degree one map from the suspension of 77! to
T Tr-1-i Since we can embed T"-! X [—1, 1] in S”, we have a degree

one map from S” to the suspension of T7-!, hence to T * T"~ 1~ Thus
Hurewicz map is surjective.

§3. HOMOLOGY OF THE GROUP OF PIECEWISE LINEAR HOMEOMORPHISMS

Let PL.(R) denote the group of piecewise linear homeomorphisms of R
with compact support. Let p:PL.(R) X PL.(R) = PL.(R) be the com-
position of two isomorphisms PL.(R) = PL.((—o,0)) and PL.(R)
= PL.((0, o)), and the inclusion

PL.((—,0)) x PL:((0, )) = PL.(R) .

Then p induces a product * on the homology of BPL.(R)? ([10]).
The homology of the group PL.(R) of piecewise linear homeomorphisms
of R with compact support is described as follows. For positive integers i
and j, put L
Vij = RA ®QR/\j
i j

THEOREM (3.1).

H,(BPL,(R)%;Z) = Y VFk ®q... QqVFkks |
where the sum is taken over even number of positive integers
ki ki, ..,k k)
such that k[ + k| + ...+ k, + k7 = m. Moreover, the *-product
#: H;(BPL.(R)®; Z) X H;(BPL.(R)%;Z) — H; ;(BPL.(R)%;Z)

coincides with the tensor product.
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