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332 T. TSUBOI

Y x Z-+QX x QX 5 QX

Then this represents u*ueHp +q(Q,X;Z).On the other hand, the com-
position

YxZ-+QXxClX-+PXxQX*+XxQX
bounds S Y x Z -* PX x QX -+ X x OX, which represents s(u) ® v. Hence
s(u) (x) v and u* u are related under 9^+1.

§2. Discontinuous invariants

First we review the definition by Morita ([10]) of discontinuous invariants
arising from the Godbillon-Vey invariant for codimension one foliations.

Let ^ be a codimension one foliation of a closed oriented 3/:-dimensional
manifold M. Then the Godbillon-Vey class gu(<!Z~) e H3(M; R) is defined

([6]). Let {xi, ...,xn} be a basis of H3(M; Q). Then gv(^) is written as

gv(.T) a{xi + + anxn

where au an e R. The discontinuous invariant GVk is defined by

k

GVk(Jr)= £ (X/1u...uXit)[M]aj|AQ...AQfljt6RAt RAQ...A(!R,
/!<...< ik

where [M] e H3k(M; Z) is the fundamental class. Morita showed that GVk is

natural, GVk depends only on the foliated cobordism class of and hence

there is a universal map GVk: H3k(BTi ; Z) RA/: ([10]).
The same argument applies to transversely piecewise linear foliations and

the discrete Godbillon-Vey class defined in [5] and [3]. Then the following
theorem is obtained from the description by Greenberg ([7]) of the classifying

space for them and Lemma (1.1).

Theorem (2.1). Let !F be a codimension one transversely orientable

transversely piecewise linear foliation of a closed oriented 3k-dimensional

manifold M(k^ 2). Then GVk(T) 0.

Proof The weak homotopy type of the classifying space Z?ffL for
codimension one transversely oriented transversely piecewise linear foliations
is known by Greenberg ([7]). This classifying space BffL has the weak

homotopy type of the join BR5 * BRè of two copies of BR5 K(R, 1). Let
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gv denote the discrete Godbillon-Vey class defined as a 3-dimensional cohomo-

logy class of this classifying space ([5], [3]).

gv e H3(BT^L; R)

By Lemma (1.1), the higher discontinuous invariants GVk are trivial in this

classifying space i?rfL. Hence by the naturality of GVk, GV/f^) 0.

Corollary (2.2). Let be a codimension one transversely piecewise

linear foliation of S3 x S3. GF(J^) (a, b) e H3(S3 x S3, R) satisfies

a/b eQu(oo).

Proof 0 GV1(^r) aAQb. Hence a/b eQu{oo}.

Remark. Morita translated the question of rationality into that of graded

commutativity of *-product defined on the homology of the group of
diffeomorphisms of R with compact support ([10]). In the later sections, we

calculate the homology of the group PLC(R) of piecewise linear homeo-

morphisms of R with compact support as well as the *-product structure. We

see that the *-product is certainly not graded commutative, which insures the

rationality. The argument on the rationality of transversely piecewise linear
foliations uses the fact that the Godbillon-Vey invariant localizes on
transversely discrete sets and this argument cannot be generalized for smooth
foliations for the moment. See how the class exists in §3. We also

see that the Whitehead product of elements of nn(BT^L) which are not zero
in homology is usually nontrivial and has infinite order.

Remark. The Hurewicz map

nn(Br*L)->Hn(Br?;Z

is surjective. To see this, note first that by Greenberg ([7]),

Hn(BTf; Z) f'R < ® Q R*» - » - <

/ 1

An element (a, AQ aqö,) ® Q (bi+i AQ AQô„_,) e RA' <g)Q RA"~ is

represented by the following foliation of T'* 1 Consider the foliated
R-product with noncompact support over Tn~l such that the holonomy

h: kI (Tn ~1 -> PL(R)is given by

h(ej) W ea>x for x < 0 and h(ej)(x)x for x > 0 if 1,

He/) H) x for x < 0 and h(ej) (x) ebJx for x > 0 if + 1,- 1
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This foliation restricted to Tn~1 x [- 1, 1] induces a foliation of Tl* Tn~x~i
which is

T"~l x [-1, l]/(rf x P"-1-' x { -1} ~ T' x { -1}
Ti x r*-1-*' x {1} ~ Tn~l^t x {1})

Note that there is a degree one map from the suspension of Tn~l to
7'/* Since we can embed Tn~x x [-1,1] in S", we have a degree

one map from S" to the suspension of Tn~l, hence to T'* Thus
Hurewicz map is surjective.

§3. Homology of the group of piecewise linear homeomorphisms

Let PLC(R) denote the group of piecewise linear homeomorphisms of R
with compact support. Let p : PLC(R) x PLC(R) -> PLC(R) be the

composition of two isomorphisms PLC(R) PLC((- oo, 0)) and PLC(R)
PLc((0, oo)), and the inclusion

PLC({- oo, 0)) x PLc((0, oo)) - PLC(R)

Then p induces a product * on the homology of BPLC(R)6 ([10]).
The homology of the group PLC(R) of piecewise linear homeomorphisms

of R with compact support is described as follows. For positive integers i
and j, put

ViJ RAi ®qRaJ
i j

(R Aq Aq R) (x) q (R Aq Aq R)

Theorem (3.1).

Hm(BPLc{R)«;Z)£ ®Q... ®Q

where the sum is taken over even number of positive integers

such that k{ + k^+ + k~ + k* Moreover, the

*:Hi{BPLc{R)6;Z) X Hj(BPLc{R)8;Z)R)8;Z)

coincides with the tensor product.
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