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RATIONALITY OF PIECEWISE LINEAR FOLIATIONS
AND HOMOLOGY OF THE GROUP OF PIECEWISE LINEAR
HOMEOMORPHISMS

by Takashi TSUBOI

INTRODUCTION

Let % be a codimension one transversely piecewise linear foliation of
S3 x S3. For such a foliation, the discrete Godbillon-Vey class is defined as
a 3-dimensional cohomology class ([5], [3]). Hence in this case, GV (%)
e H3(S3 x S3;R) = R® R.

In this paper, we first show that if GV(¥) = (a,b) € H3(S® X S3; R),
then a/b € Q U {o}, which is the meaning of the rationality in the title.

The same question on the Godbillon-Vey class ([6]) for the smooth
codimension one foliations was raised in Gel’fand-Feigin-Fuks [2] and
discussed in Morita [10]. In the case of transversely oriented, transversely
piecewise linear foliations, the classifying space for them is known by
Greenberg ([7]). In fact, this classifying space is weakly homotopic to the join
BR3 x BR? of two copies of BR® = K(R, 1) which is the classifying space for
the additive group R with the discrete topology. Since the cup product is trivial
on the cohomology ring of the join of two spaces (see §1), the higher
discontinuous invariants defined by Morita ([10]) are trivial in this classifying
space. The rationality for codimension one transversely piecewise linear
foliations of S3 x S3 is a consequence of this.

Morita translated the question of rationality into that of graded
commutativity of *-product defined on the homology of the group of
diffeomorphisms of R with compact support ([10]). Using the description by
Greenberg ([7]) of the classifying space for transversely oriented, transversely
piecewise linear foliations, we can calculate the homology of the group
PL.(R) of piecewise linear homeomorphisms of R with compact support as
well as the *-product structure. Then we see that the *-product is certainly not
graded commutative, which insures the rationality. In fact we calculated this
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first, and later we found out the fact that the classifying space is a join is the
origin of rationality.

This paper is organized as follows. In § 1, we show two lemmas in algebraic
topology. One asserts that the cup product.is trivial on the cohomology ring
of the join of two spaces. The other concerns the relationship between the
tensor product in the E? term of the spectral sequence associated to the
fibration QX — PX — X and the Pontrjagin product on the homology of Q.X.
Both of them should be well known but we include their proofs. In §2, we
review the definition of discontinuous invariants of Morita ([10]). We see
immediately that all higher discontinuous invariants vanish for codimension
one transversely piecewise linear foliations. This implies the rationality of such
foliations. The rest of this paper concerns the homology of the group PL.(R)
of piecewise linear homeomorphisms of the real line with compact support.
This would be of interest because it would provide a good concrete example
illustrating the relationship between the homology of the group of homeomor-
phisms and the homotopy of the classfying space for foliations. In §3, we give
the result of calculation of the homology of PL.(R). In §4, we describe the
way of calculation. This is done by defining sufficiently many cocycles. For
this, we define and use a determinant with values in the tensor product over
the rationals Q of a number of copies of R. In §5, we show the fact that the
homomorphism PL.([0,)) = R which sends f to logf’(0) induces a
surjection in homology. Since there are no natural sections, this is not trivial.
The nontriviality of the cocycles defined in §4 depends on this fact.

My knowledge on the group of piecewise linear homeomorphisms of the
real line was deepened during my visit a I’Université de Genéve in the winter
1990/91. I would like to thank it for its warm hospitality. This work is done
during my visit 3 I’Ecole Normale Supérieure de Lyon in the spring 1991. 1
would like to thank it for its warm hospitality and I also thank la Fondation
Scientifique de Lyon et du Sud-Est for the financial support. I thank André
Haefliger, Etienne Ghys, Peter Greenberg, Vlad Sergiescu and Shigeyuki
Morita for their interest taken for this work.

§1. LEMMAS

First we show the cup product is trivial on the cohomology ring of the join
of two spaces. This is an exercise in algebraic topology.

LEMMA (1.1). Let X and Y be two topological spaces. The cup
- product on the cohomology ring of the join X=*Y is trivial.
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Proof. We may assume that X and Y are simplicial complexes. The
simplices of the join X * Y other than those in X and in Y are the joins of
simplices of X and Y. Since X # Y contains the cones of X and Y, any cocycle
on X * Y is cohomologous to a cocycle which vanishes on chains in X or Y.
We look at the Alexander-Whitney approximation of the diagonal map
X*Y—>X*xY X X*Y. The image of a simplex in X*Y in Cy(X*Y)
® Cx«(X*Y)1is a sum of 6; ® o;, where either 6, or ¢; does not contain the
edge corresponding to the joining interval. Hence the evaluation of the cup
product of two modified cocycles is always zero.

The second lemma concerns the relationship between the tensor product
in the E? term of the spectral sequence associated to the fibration
QX — PX — X and the Pontrjagin product * in the homology of the loop
space QX.

LEMMA (1.2). Let X be a simply connected CW complex such that
H.(X;Z) istorsion free. Let PX and QX be the path space and the loop
space of X, vrespectively. Let

El . =H,(X;Z) ® H(QX; Z)

denote the E? term of the spectral sequence associated to the fibration. For
positive integer p, there is a homomorphism

5t Hy(QX; Z) > H, (X Z)
such that, for v e H,(QX;7Z),
sw)@veE,,, ,=H.(X;Z) @ H(QX; Z)

p+1l,q
and

uxv e Hy, ,(QX;7Z)

are related under 0°*+', where = denotes the (Pontrjagin) product
induced by the composition of loops. More precisely, for the submodules

and B, ., of E: which give E,. ., ,=2Z, /B,

p+l,q p+1l,q pt+tl,q

swy@ovezy,, ., and 0377 '(s(u)@®v) — u*v e B?

O,p+q *

Proof. The element u is represented by the image of the fundamental class
of a p-dimensional finite complex Y under a continuous map Y — QX. We
define s(u) to be the class represented by the adjoint map SY — X, where SY
denotes the suspension of Y. Since the composition ¥ = QX — PX bounds the
map SY = PX in the obvious way and the composition SY —» PX — X
represents s(u) € H,, (X;Z),s(u) and u are related under 87+!. Let
Z — QX represent v. Consider the composition
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YXZ->0XX QXS Qx.

Then this represents u*v € H,,,(QX;Z). On the other hand, the com-
position

YXZ->QX X QX ->PX X QX > X x QX

bounds SY X Z - PX x QX — X x QX, which represents s(x) ® v. Hence
s(u) ® v and u = v are related under 97+!,

§2. DISCONTINUOUS INVARIANTS

First we review the definition by Morita ([10]) of discontinuous invariants
arising from the Godbillon-Vey invariant for codimension one foliations.

Let .%¥ be a codimension one foliation of a closed oriented 3k-dimensional
manifold M. Then the Godbillon-Vey class gv(¥%) € H*(M;R) is defined
([eD. Let {x;, ..., x,} be a basis of H3(M; Q). Then gv(.¥) is written as

gu(F) =aix; + ... + a,x,,
where a,, ..., a, € R. The discontinuous invariant GV} is defined by

k
GVk(y)Z E (x,-lu...ux,-k)[M] a,-l/\Q.../\QaikeR’\kzR/\Q.../\QR,

<.y

where [M] € H;,(M; Z) is the fundamental class. Morita showed that GV is
natural, GV, depends only on the foliated cobordism class of .#, and hence
there is a universal map GVy: H;,(BI';; Z) = R** ([10]).

The same argument applies to transversely piecewise linear foliations and
the discrete Godbillon-Vey class defined in [5] and [3]. Then the following
theorem is obtained from the description by Greenberg ([7]) of the classifying
space for them and Lemma (1.1).

THEOREM (2.1). Let % be a codimension one transversely orientable
transversely piecewise linear foliation of a closed oriented 3k-dimensional
manifold Mk >2). Then GV (%) =0.

Proof. The weak homotopy type of the classifying space BT'PZ for
codimension one transversely oriented transversely piecewise linear foliations
is known by Greenberg ([7]). This classifying space BI'** has the weak
homotopy type of the join BR?® * BR?3 of two copies of BR? = K(R, 1). Let




PIECEWISE LINEAR FOLIATIONS 333

gv denote the discrete Godbillon-Vey class defined as a 3-dimensional cohomo-
logy class of this classifying space ([5], [3])-

gv € H3(BTT:; R) .

By Lemma (1.1), the higher discontinuous invariants GV, are trivial in this
classifying space BFfL. Hence by the naturality of GV, GV, (¥) = 0.

COROLLARY (2.2). Let % be a codimension one transversely piecewise
linear foliation of S3 X S*. GV(¥) = (a,b) € H*(S* x §3,R) satisfies
a/b e QU {x}.

Proof. 0= GV,(¥) =aAqb. Hence a/b € Q U {}.

Remark. Morita translated the question of rationality into that of graded
commutativity of *-product defined on the homology of the group of
diffeomorphisms of R with compact support ([10]). In the later sections, we
calculate the homology of the group PL.(R) of piecewise linear homeo-
morphisms of R with compact support as well as the *-product structure. We
see that the *-product is certainly not graded commutative, which insures the
rationality. The argument on the rationality of transversely piecewise linear
foliations uses the fact that the Godbillon-Vey invariant localizes on
transversely discrete sets and this argument cannot be generalized for smooth
foliations for the moment. See how the class C?l, 11,1y €xists in §3. We also
see that the Whitehead product of elements of n,(BIT'7*) which are not zero
in homology is usually nontrivial and has infinite order.

Remark. The Hurewicz map
n,(BT %) -» H,(BT'*; Z)
is surjective. To see this, note first that by Greenberg ([7]),

_ n—1
H,BT{";Z)= ) RN@qRM-1-1,
i=1
An element (a1 Aqg-.-No a,-) ®Q (b,‘+1/\Q ...N\g bn—l) e R~ ®Q RAn-1-i 4g
represented by the following foliation of 77/ 7"-1-i Consider the foliated

R-product with noncompact support over 7"~! such that the holonomy
h:m (T"-') - PL(R) is given by

h(e;) (x) = e%ix for x <0 and h(e;)) (x) = xfor x >0if j=1,...,i
h(e;) (x) =x for x<0 and h(e;) (x) =ebix for x>0if j=i+1,....n—1.
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This foliation restricted to 7"-! x [—1, 1] induces a foliation of 7T/ % Tn-1-i
which is
T} [-1,11/(T!x Tr-1-ix{—-1}~Tix{-1},
Tix Tr-l-ix {1} ~Tr"1-ix{1}).
Note that there is a degree one map from the suspension of 77! to
T Tr-1-i Since we can embed T"-! X [—1, 1] in S”, we have a degree

one map from S” to the suspension of T7-!, hence to T * T"~ 1~ Thus
Hurewicz map is surjective.

§3. HOMOLOGY OF THE GROUP OF PIECEWISE LINEAR HOMEOMORPHISMS

Let PL.(R) denote the group of piecewise linear homeomorphisms of R
with compact support. Let p:PL.(R) X PL.(R) = PL.(R) be the com-
position of two isomorphisms PL.(R) = PL.((—o,0)) and PL.(R)
= PL.((0, o)), and the inclusion

PL.((—,0)) x PL:((0, )) = PL.(R) .

Then p induces a product * on the homology of BPL.(R)? ([10]).
The homology of the group PL.(R) of piecewise linear homeomorphisms
of R with compact support is described as follows. For positive integers i
and j, put L
Vij = RA ®QR/\j
i j

THEOREM (3.1).

H,(BPL,(R)%;Z) = Y VFk ®q... QqVFkks |
where the sum is taken over even number of positive integers
ki ki, ..,k k)
such that k[ + k| + ...+ k, + k7 = m. Moreover, the *-product
#: H;(BPL.(R)®; Z) X H;(BPL.(R)%;Z) — H; ;(BPL.(R)%;Z)

coincides with the tensor product.
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For small dimensions, this theorem says that

H,(BPL.(R)%;Z) = 0,

H,(BPL.(R)®;Z) = R ®qR,

H;(BPL.(R)>; Z) = RAqR) ®qR ® R ®(RAR), and

H,(BPL.(R)*; Z) = R AqRAqR) ®qR @ (RAqR) ®o (RAQR)
®R®eRAQRAQR) DR ®eR®qR®R .

The first homology group is 0 is equivalent to that PL.(R) is perfect and
this is due to Epstein ([1]). The second and third homologies are given explicitly
by Greenberg ([7]). The summand R ®oR ®¢ R ®¢R of H,;(BPL.(R)%;Z)
is the image of the *-product on H,(BPL.(R)®; Z) and since the *-product
coincides with the tensor product, the *-product is not graded commutative.
This implies that the Whitehead product

n3(BITTY) X 13 (BTFH) - s (BT1H)

is highly nontrivial and this is the obstruction to construct a foliation on
S3 x 83 with given Godbillon-Vey class. In this way, as in mentioned in §2,
this is related to the rationality (see [10]).

Theorem (3.1) is also obtained as an application of the description by
Greenberg ([7]) of the classifying space Bl:f L. As we mentioned, his result
says that this classifying space is weakly homotopy equivalent to the join
BR3x BR®, To show Theorem (3.1), we use the isomorphism

H,(BPL.(R)%; Z) = H,(QBT{"; Z)

due to Mather ([9]) adapted for the PL case by Ghys-Sergiescu ([5]) and

Greenberg ([7]) using a result of Segal ([11]), and the homology spectral
sequence associated to the fibration

QBT?: — pPBT Pt — BIP-
Since BT!* is simply connected, the E2 term of this spectral sequence is as
follows.

E,, ,=H, (BUT";7) ®¢ H,(QBT™; Z) .
Note that H4(BT't";Z) is torsion free. From this, Greenberg obtained the

second and the third homologies ([7]). To show our theorem, we show that,
for p > 0,

2 _ 2 _ _ D

EpH,q—ZpH’q—...—ZpH,q and
p+1l g _ . p®™ _ _ n2
Zp+1,q - Zp+1,q = 0 = Bp+1,q e Bp+1,q .
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This is equivalent to that the differentials induce an isomorphism

¥ H,, (BT ;7Z) ® o H,(QBT;Z) - H,, ,(QBT™; 7).

p+tgq=m,p>0

To show this we define the cohomology classes of BPL, (R)® which detect the
images of generators of H,, ;(BI'{";Z) ® o H,(QBT"; 7).

§4. CONSTRUCTION OF COCYCLES OF THE GROUP PL.(R)

Tensor determinants. We define a determinant of an (n X n) real matrix
which takes values in the tensor product over Q of n copies of R. For

(@i)ij=1,..n» WE put

det®Q(aij) = Z sign(o) as1y1 ®q --- ®Q Asmyn -

For example,

® ay dap
det ®eo . 4 =ay; gy — a1 Xgdaiz -
21 a2

We have the usual multilinearity but we do not have the usual alternativity.
For example,

a
det®a
a

b) =0 but det®e (a a) =a®ob—b®ga=aNgb.
b b b

The latter is not necessarily zero. In general, if we change the rows then this
determinant changes sign, however, there are no simple laws for changing
columns. It is worth noticing that we have the usual formula of developing
with respect to the first or the last column.

det®e(a;) = Y, (—1)i*la; ®qdet®e(4;)

i+1

= E (—1)i+ndet®Q(Ain) ®Qain ’
i+1

where A;; is the matrix (a;;) with the i-th row and the j-th column deleted.

Cocycles of Lipschitz homeomorphism groups. We review the construc-
tion of cocycles of certain Lipschitz homeomorphism groups of the real line
or the circle (see [13]). Let & be the space of functions with compact support
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which are locally constant outside of finitely many points. (For other Lipschitz
homeomorphism groups, & is replaced by other spaces of functions which
contains the logarithm of derivatives of the homeomorphisms.) Let V be a
Q-vector space. Let

n

A:FX .. XF >V

be a multilinear form which is invariant under the parameter change in the
following sense. If A is a homeomorphism of R with compact support, then

A@h, ..., @n0h) = A(Q1; --05 On) -

Then the V valued function

n
T N,

C:PL.R) X ... x PL.(R)—>V
defined by
C(81, 825 .-, 8n) = A(logg© 820 ...0 8y, 10880830 ... 08y, ..., logg,)
1s an n-cocycle of PL.(R). The verification is straightforward.

Cocycles of PL homeomorphism groups. For a (2s)-tuple of positive
integers (k,, k[, ...,k , k) such that k] + k; + ... + k] + k] = m, we
define a multilinear form

m

——

m .
AGr ity ks kX o x S > RO

: : -+ — o
whose values are contained in V#1:41 ®gq... ®q V*s-#s . This is given by

1
A?/t(f,kf,...,ks_,k:)((pl,-~-’(|)m) = Y — det ®e

Xy < .o < Xy m!
(PG = 0)... 0(x; — 0) A@(xy) ... Ap ()
TN T N, e,
ki kT

(P(Xs— O) (D(Xs - O) A(p(xs) A(p(xS)) ’

N . g \M_/
ks kg

where ¢ denotes the vertical vector (¢, ..., ¢,) and Ap(x) = ¢(x + 0)

— @(x — 0). Note that, since @, ..., ¢,, are elements of %, the sum is in fact

a finite sum. It is clear that A Gkt .. k5, 1t 18 invariant under the parameter
change.
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For example, the functional Af ;,: ¥ x &> R ®gR is defined as
follows.

1
A?l,n(‘Pl,(Pz) = ) —det®o

xeR 2

((Pl(x - 0) A(Pl(x))
P2(x —0) Ag(x)

1
- —2—((91(x—0)®QA(p1(X) — P2(x—0) ®oAP2(x)) e R®R .

xeR
Then Afl,l) is bilinear and invariant under the parameter change. This
functional A%m) composed with the evaluation map R ®¢ R — R gives the
area of the polygon whose vertices are the image of (¢,, ¢,) and whose edges
join the subsequent vertices with respect to the order of R. The functional
Afl, 1y gives rise to the following 2-cocycle Cfl, -

1
C(zl,l)(glng) = ¥ 5det®0

xeR

(log 2108 (x—0) Aloggiog(x)

eR ®QR .
log g;(x—0) Alog g;(x) )

This 2-cocycle Cfl, 1y composed with the evaluation map R ®o R — R is the
discrete Godbillon-Vey invariant ([5], [3], [13], [8]).

The nontriviality of this class is shown easily. Let g; and g, be piecewise
linear homeomorphisms of R with support in [— 1, 0] and [0, 1], respectively,
such that log g7(0 — 0) = a and log gg(O +0) = b. Then (g, 2) — (g2, g1) 15 a
2-cycle and

1 a —a 1 0 b
C; , &) — (22, = — det ®o — — det®o
(1,1)((81 2) — (22, 81)) > (O b ) 5 (a —a)

=(ZC>Qb.

Another interesting example is A, | ., defined by

1
Al (01, 02, 03, 04) = Y Zdet@@(m(X~O)A@(X)cp(y—O)Aw(y))

x<y“.
ER@QR@QR@QR

where ¢ denotes the vertical vector “(¢;, @,, ®3, ®4). This gives rise to the
cocycle C?l,l,l,l) which measures the noncommutativity of *-product. The
nontriviality of C?l, 1.1,1) 18 easily shown by evaluating on the *-product of
two examples described above.

Independence of the cohomology classes. The bijectivity of the homo-
morphism

Y H,. (BT™;7Z)®¢H,(QBT™;Z) - H,, (QBT';Z)

p+qg=m
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is equivalent to the independence of the cohomology classes of these cocycles
Chi kit ks k- To show the independence we use the following theorem.
ki ks ks

THEOREM (4.1). Let j,:PL.([0, ®)) = R denote the homomorphism
defined by

J+ (f) = 1logf7(0) .

The homomorphism j. induces a surjection in integer homology.

Using this theorem, we can show the independence. Let u; ®qu; be an
element of Vi & (u7 eR % ,u;t e R**i'). Then we have a k; -dimensional
cycle 6; of BPL.((— %, 0])® such that the image under (j_)s coincides with
u; e R4 = H,~(BR?;Z), where j_:PL.((—,0]) >R denotes the
homomorphism defined by Jj_(f)=1logf’(0). We also have a
k; -dimensional cycle o, of BPL.([0, ))® such that the image under (j,)x
coincides with u; € RA%' = H,+(BR®;Z). Then o] x o; is a (k; +k;°)
-dimensional cycle of B(PL.((— o, 0]) X PL.([0, ©)))? such that the image
under (j_ X j;)« coincides with u; ®qu;" € Vkiki' | Now let Ty, ..., T, be
translations of R such that 7,(0) < ... < T,(0) and the supports of
o, = Ti(c; X 6,7 )T;" are contained in disjoint open intervals, where the
support of a cycle of BPL.(R)? is the union of the supports of the
homeomorphisms which appear in the expression of the cycle. Then
G1 X ... X 0, 1s an m-cycle and the value of the cocycle Ci - ,+ .= .+ on
itis (4, Dou) ®q... Volu; ®out). It is easy to see that the values of
the other m-cocycles on this cycle are 0.

The fact that =*-product coincides with the tensor product follows
from Lemma (1.2). Note that the map s in Lemma (1.2) is an isomorphism
from the subgroup of H,(BPL.(R)%;Z) generated by the 6~ X 6* to
Hy . (BTV"; Z). Thus Theorem (3.1) is proved.

§5. SURJECTIVITY OF (j, )«

We prove Theorem (4.1). We consider j, as a homomorphism from
PL.([0, »)) to the group of germs at 0. We use the fact that the z-dimen-
sional homology group of BR? is isomorphic to R*” and whose generators
are represented by the images of the fundamental classes of tori 7" of dimen-
sion n under the mappings which are defined by » (commuting) elements. We
will construct an n-complex Y, with the fundamental class and a degree one
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map Y, — 7T". Then for each mapping 7”7 — BR®, we will construct a
mapping Y, = BPL.([0, »))® such that the following diagram commutes.

Y, — BPL.([0, x))3

! !

- BRe® .

Theorem (4.1) follows immediately from this commutative diagram.
Construction of Y,. Let L be a large positive real number. In the
Euclidean 7 space, we consider the following polyhedron X,

X ={Cer, oo xn) € [0, L17 5 x5 + oo + x5, 2 (K= 1)k/2
for 1<i<..<ig<n}.

1

The shape of X, is the cube with certain neighborhoods of the k-faces
(k <n—2) in the coordinate planes deleted, those of the (k — 1)-faces being
thicker than those of the k-faces.

The polyhedron X, has 2" — 1 + n faces of dimension n — 1. If
(X15 ...y Xn) 1s a vertex of X, then (x,...,x,) is a permutation of
O,1,.,kL,...,L). In this case we say (x;,...,X,) is a vertex of type
{0,1,..,k,L,...,L}. There are edges between (xi, ..., X,) and (xi, ..., x,) of
the same type {0,1,..,k,L,...,L} if one is obtained from the other by
permuting two coordinates. The edges between different types exists only if
the types are {0,1,..,k—1,L,...,L}and {0,1,..,k,L,...,L}, and one vertex
is obtained from the other by changing the entries k& and L.

The polyhedron X, has the (n — 1)-face {x; = L} which is isometric to
X,_1. The (n — 1)-face {x; = 0} is isometric to X,_; with L replaces by L — 1
because if x; = 0 then

X, + wus +X,'k> (k—l)k/2

1
for {ii, ..., iy} containing i/ implies
G, =D+ o+ 0, — 1) =2 (k—-1)k/2

for {i;, ..., iy} not containing i. Hence we can define a simplicial identifica-
tion between the faces {x; = L} and {x; = 0}. In general, the face

{x,'l + ... + Xip = (k— l)k/Z}
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is isometric to X, _, X Xz, where X, . is X,_« with L replaced by L — k
and X, is the face {x; + ... + xx = (k — 1)k/2} in X, . The reason is
Xip oo+ Xy, 2 (k' —1Dk'/2
for {i{, ..., .} containing {i, ..., ik} implies
G — k) + oo+ (g, — k) > (k' —1)k'/2

for {i!, ..., i}, } not containing {i, ..., ix}. We also fix a simplicial identifica-
tion between X, , and X,_x. Now we distinguish the faces by the set
{iy, ..., ix} of indices and we see that

aXn = v X{],...,n}-A X 2:A

Ac{l,.,n},#A2>22
(L) ©
UV X e Y Y X -y
1 1

s ey N}

where

Xt umy—a X Za = {X + o+ X = (k= Dk/2} i A ={i, 0 i,
x® o _n={x=L} and X{ ., _;={x=0}.

The complex Y, is defined inductively as follows. Y, = X; = [0, L]. Y; is
obtained from X, (a pentagon) by identifying X {) and X{;)(i = 1,2) and by
taking the double of it. Hence Y, is a surface of genus 2. We call the new
part in the double BY; 1.

Y2 = Xz + BZ{I,z} .

Y, is obtained from X; by identifying X{, and X, (i,j=1,2,3), by
attaching X{k} X BE{,-,j}({i,j,k} = {1,2,3}) to each X{k} X Z{i,j}, and then
by taking the double. The boundary before taking the double is a surface of

genus 6. We call the new part in the double BX, , 3.

Y; = X3 + ) X(1,2,3) ~ {iy, i} X BEtiy iy + BEy1 2,3y -
{i],i2}C{1,2,3}

In general, we define Y, to be the double of

Xp + Z X1, ..,n-a X BXy

AC{l,..,n},#A>2

cesy

Y, =X, + ) X1, .om-a X By + BX, .

AC{l,..n},#A>2

The mapping from Y, to 7" is the one which sends the all BX, parts to
a point and X, to the fundamental domain of 7.
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Construction of Y, = BPL.([0, »))%. Now given a mapping 7” — BR?,
we construct a mapping Y, = BPL.([0, ))3. In other words, given
a homomorphism Z"— R, we construct a homomorphism 7,(Y,)
— PL.([0, )). This is also done inductively.

For n =1, it is only necessary to choose a lift in PL.([0, »)) of an
element of R.

Now for n = 2, we choose lifts f;, f, of the generators of Z?. To the
edges of Y,, we associate elements of PL.([0, )). We put f; on the edges of
X, from (L, L) to (0,L) and from (L, 0) to (1,0), and we put f, on the edges
of X, from (L,L) to (L,0) and from (0,L) to (0,1). Then we put the com-
mutator [f, /2] = fi /o f1'f, ' on the edge from (0,1) to (1,0). Note that
the support of this commutator does not contain 0 hence this commutator is
an element of PL.((0, o)). This commutator is also written as a commutator
of elements of PL.((0,)). We can do it very easily, not by using the
perfectness of the group PL.((0,)), but by using a conjugation by an
element of PL.(R) which sends 0 to a(>0) and which is the identity on
(2a, ©) when the support of [f;, f>] is contained in (2a, o). We call this
conjugation ¢y . (This technique using conjugation is similar to that in [12].)
s 1S an isomorphism from PL.([0, o)) to a subgroup of PL.((0, %)). Then
[fi, 2] = c«([fi, £2]) = [cafi, cx /o] and we associate ¢4 f1, ¢4 f> to the edges
in the new part in the double (in the mirror). Thus we defined the desired
mapping Y, = BPL.([0, ))3.

For general n, we use the same strategy. First we choose lifts fi, ..., f, of
the generators of Z”. To the edges of X,, we associate elements of
PL.([0,)). We associate f; to the edge from a vertex of type
{o,1,..,k—1,L,...,L} to a vertex of type {0,1,..,k,L,...,L} if the i-th
coordinate changes from L to k. Then the elements associated to other edges
are uniquely determined. In fact, we can associate an element of PL.([0, ))
to each vertices as follows. We associate id to the vertex of type {L,...,L},
if we already associated an element f, to a vertex v of type
{0,1,..,k—1,L,...,L} and a vertex v’ is obtained from v by changing the i-th
coordinate from L to k then we associate f; f, to the vertex v’. Thus the
edge from one vertex v; to another vertex v, is associated with f,, f '. Now
if we look at the edges of ¥, in the (n— 1)-face Xy . -4 X X4 the
associated elements are in PL.((0, )). By induction, we can find BX, with
edges in PL.((0, =)). Thus we find the boundary of

Xn + Z X{l,...,n}—A X BZA

Ac{l,.,n},#A22
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is a cycle of PL.((0, »)). Here the products are considered as in the following
remark. Hence in the double Y,, we can associate the images under ¢4 in the
new part of the double. (cx is the conjugation by an element of PL.(R) which
sends 0 to a’(> 0) and which is the identity on (2a’, o©) when the support of
the above boundary is contained in (2a’, ).) Thus we defined the desired
mapping Y, = BPL.([0, »))®. This proves Theorem (4.1).

Remark. For two simplices (g;,...,&,) and (h,41, ..., hysn) of the
classifying space for a discrete group, we define the product of them as
follows.

(gl, seey gm) X (hm+19 ERE) hm+n) = Z sign(c) (fcs,l, sevey fc,m+n) .

(o)

where the sum is taken over the shuffles o (that is, those permutations such
that 6(1) < ... <o(m) and o(m+1) < ... < o(m + n). The entry Jo,; 18
defined as follows.

Jooih =8 (U=1,...,m) and
Jomej= &k 8m) Pm+j(&k--.8n) ™' (G=1,...,n),
where k is the integer such that 6 (kK — 1) < 6(m +Jj) < o (k). For example,
(81, &2) X (hs, hy)
= (&1, 82, 13, hy) — (gl,g2h3g2_1,g2,h4)
+ (£18273(8182) 7', 81,82, ha) + (81, 2Pag; ', @ hags L, )
— (&18273(8182) 7', 21, 22hagy ', )
+ (£182h3(2182) 7', 8182h4(8182) 1, g1, 82).
This product is defined so that
0815 s 8m) X (tmsts oovy By )
= (815 s 8m)) X Pty oy By )
(D@ s 8n-) X @18y ey 8Py ng)
(D" s 8) X Omsry ooy Bsn))

where
m—1 a(gl, seey gm) = (gZa soey gm)
+ ';1 (—l)i(gls"-9gi—lagigi+lagi+2a"'9gm) + (—l)m(gh""gm—l)
=0'(&1s s 8m) + (—1)™(81, .oy 8mo1) .

For the above complex we triangulate it and associate the elements for their
products.
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