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Example. Let B be the 'sequence (0w 1w)>, and let f be defined on
{0,1,w} by f(0) =1, f(1) = 0, f(w) = o, then one has:
By=O0olololo---)(=B),
B =(lo0wlodw:--),
B, = By,

Ay= Oolololw:---),
A = 0llw00low:---),
A, = (0110001 - ),

Note that if T is finite, and f one-to-one, such a sequence Tt(B, f) can
also be obtained by replacing B by a sequence of greater period and f by id.
We now give four examples of Toeplitz transforms in (apparently)

unrelated domains.

2. PAPERFOLDING SEQUENCES AND TOEPLITZ TRANSFORMS

In [23] and [22] Prodinger and Urbanek study the Toeplitz transform of
(0w 1w)>,id) and of (0w 1w 1w0w)>,id). They prove that these sequences
do not have arbitrarily long squares (a sequence A contains a square of length
2k if there exists an index j such that A(j+n) = A(j+ n+ k) for every n
between 0 and k — 1). Dekking already noticed in [10] that the first sequence
is nothing but the regular paperfolding sequence (see [9], [18], [20], [17]),
which is obtained by repeatedly folding a piece of paper, and we obtained
in [1] the same result as Prodinger and Urbanek for the general paperfolding
sequences. Let us give here two simple examples:

PROPOSITION. Let B be the sequence B = 0Ow1w®)* and let [ be
defined by f(0) =1, f(1) =0 and f(w) = w. Then

the sequence Tt(B,id) is the regular paperfolding sequence,
the sequence Tt(B, f) is the alternate paperfolding sequence.
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Proof. It follows from instance from [18] (after replacing 1’s by 0’s and
— 1’s by 1’s) that the regular paperfolding sequence R and the alternate paper-
folding sequence A are given by

R2*Cm+1) 1) = ( _(2_ hm) Vk,m>0.

AQFCm+1)—1) = (1—(_21)k+m) Vik,m>0.

Let U and V be the sequences defined by
U= Tt(0n1lw)*®,id) ,
V=Tt((0wlw)=,f).

A straightforward computation gives

UQRn) = (1_(2_ D") Yn>0,

URn+1)=Un) Vn=0.

Hence
URK2m+1)—-1) = URQR'2m+1)—-1)+1)

(1-(-Dm)

= UQR1Cm+1)—1) = -+ = UQm) = .

This proves that U = R.
In the same way one has

(1-(=D")
2 b
ven+1l)=1- V).

V(2n) =

Hence
VR2m+1)—1) = VRQR-1C2m+1)—-1)+1)=1-VQR-'2m+1)—-1)

V@2m) if kiseven, | (1 — (= 1)k+m)
1 - V(@m) if kisodd, | 2 :

and finally V = A.
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