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TOEPLITZ SEQUENCES, PAPERFOLDING,
TOWERS OF HANOI AND PROGRESSION-FREE SEQUENCES
OF INTEGERS

by Jean-Paul ALLOUCHE and Roland BACHER

ABSTRACT. What is the relationship between folding a piece of paper,
moving disks in the classical tower of Hanoi algorithm and searching for
minimal sequences of integers having no p terms in arithmetic progression?
Our aim is to show how the Toeplitz sequences introduced by Jacobs and
Keane in [15] allow us to give (infer alia) a unified description of the preceding
problems. We give moreover some connections between Toeplitz sequences and
g-automatic sequences.

1. TOEPLITZ SEQUENCES

In [15], (see also [21]), Jacobs and Keane defined the notion of Toeplitz
sequence: they wanted to construct ‘‘explicit’’ sequences giving rise to strictly
ergodic systems. They proved moreover that the unique invariant measure
attached to such a sequence has a discrete rational spectrum. Roughly speaking
a Toeplitz sequence is obtained by successive insertions of periodic sequences
into the ‘““holes’ of a given periodic sequence, (a precise definition is given
below). This construction was inspired by a device used by Toeplitz [28] for
building explicitly almost periodic real functions. The method of Jacobs and
Keane has since been used by many people working in ergodic theory (see for
instance [29], [16] and [25], see also [14] and its impressive bibliography). We

now give the definition of a Toeplitz sequence (compare with [15], [16], [14]
and [29]):

LetI' = {a;, - -, a,, ®} be an alphabet (finite set) with a ‘‘marked’’ letter
(““hole”) . If B = (B(k))«>o is a sequence with values in I', we define a
transformation Tp:I'N = I'N as follows: for any sequence C = (C(k))«so
with values in T, let hy < h; < --- be the increasing sequence (which might
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be finite or even empty) of those integers 4 for which C(#) = . Then one
defines

TxC()=C(@() if COU)+o,
T3C(hy) = B(k) for every k.

Suppose we are now given a sequence of periodic sequences By, Bi,
*++, By, -+ - with values in I', and such that the zeroth value of each B; is not
equal to . Writing 7; instead of T, ;> We then define a sequence of periodic
sequences as follows:

AO = BO
Ay = T1(Ap)
A2 = TZ(AI) = TZ(TI (AO))

Akt = Teo1(Ak) = T (T (- - - (T1(A0) - - 7)) -

As k goes to infinity the sequence A, tends to a limit A with values in
I' — {w} (the existence of this limit, for the topology of simple convergence,
is left to the reader): such a sequence is called a Toeplitz sequence.
"An alternative (equivalent) definition of a Toeplitz sequence is given in [29]:

A is a Toeplitz sequence if and only if one has

VheN 3dpeN* Vn =n(modp) A@r')=A(n).

In what follows we first suppose that the set I'" is not necessarily a finite
set; second, we restrict ourselves to the case where the sequence By, By, * -
has the following form: there exist a periodic sequence B with values in I" such
that B(0) # @ and a function f from I" to I with f~!(w) = {®}, such that

Vk P 0 Bk = f(k)(B) ’

where f® is the k% iterate of the function f and f®(B) is the termwise
image of the sequence B under f (k); the resulting Toeplitz sequence

A = lim Ti(- - T(Ti(B)) -+ *)

k— o
(where Tk = TBk = Tf(k)(B))
will be called the Toeplitz transform of (B, f) and denoted by T¢(B, f).
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Example. Let B be the 'sequence (0w 1w)>, and let f be defined on
{0,1,w} by f(0) =1, f(1) = 0, f(w) = o, then one has:
By=O0olololo---)(=B),
B =(lo0wlodw:--),
B, = By,

Ay= Oolololw:---),
A = 0llw00low:---),
A, = (0110001 - ),

Note that if T is finite, and f one-to-one, such a sequence Tt(B, f) can
also be obtained by replacing B by a sequence of greater period and f by id.
We now give four examples of Toeplitz transforms in (apparently)

unrelated domains.

2. PAPERFOLDING SEQUENCES AND TOEPLITZ TRANSFORMS

In [23] and [22] Prodinger and Urbanek study the Toeplitz transform of
(0w 1w)>,id) and of (0w 1w 1w0w)>,id). They prove that these sequences
do not have arbitrarily long squares (a sequence A contains a square of length
2k if there exists an index j such that A(j+n) = A(j+ n+ k) for every n
between 0 and k — 1). Dekking already noticed in [10] that the first sequence
is nothing but the regular paperfolding sequence (see [9], [18], [20], [17]),
which is obtained by repeatedly folding a piece of paper, and we obtained
in [1] the same result as Prodinger and Urbanek for the general paperfolding
sequences. Let us give here two simple examples:

PROPOSITION. Let B be the sequence B = 0Ow1w®)* and let [ be
defined by f(0) =1, f(1) =0 and f(w) = w. Then

the sequence Tt(B,id) is the regular paperfolding sequence,
the sequence Tt(B, f) is the alternate paperfolding sequence.
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