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EXAMPLES OF GROUPS THAT ARE NOT AUTOMATIC:

1. Infinite torsion groups. The mere existence of such groups is far from
trivial, so it is not very disconcerting that such groups are not automatic (it
is, perhaps, heartening). That infinite torsion groups are not automatic follows
immediately from the well-known ‘‘pumping lemma’’ for finite state automata
(see [Gi] for the proof).

2. Nilpotent groups. Finitely generated nilpotent groups which do not
contain an abelian subgroup of finite index are not automatic. This was first
proved by Holt. For example the three-dimensional Heisenberg group
H; = <a,b,c:[a,b] = c,[a,c] =1 = [b,c] >, the simplest non-abelian
nilpotent group, has a cubic isoperimetric function (see property 7 below) and
so is not automatic. The fact that nilpotent groups are not automatic is a bit
surprising and annoying, considering the fact that nilpotent groups are quite
common and have an easily solved word problem.

3. SL,(Z),n > 3. Note that SL,(Z) contains a free subgroup of index
six, and so is automatic. The proof that SL,(Z),n > 3 is not automatic
involves finding a contractible manifold on which SL,(Z) acts with compact
quotient, and showing that a higher-dimensional isoperimetric inequality is not
satisfied by that space. The search for this manifold involves the study of the
symmetric space SL,(R) / SO,(R).

4. Baumslag-Solitar ~ Groups. The  group Gpqo = < Xx,y:yxPy-1
= x9 > is not automatic unless p =0, ¢ =0 or p = +q. These groups
provide examples of groups which are not automatic but are asynchronously
automatic (see [BGSS, E ef al.)).

5. HYPERBOLIC GROUPS ARE AUTOMATIC

It is most often the case that proving that a group G is automatic requires
doing quite a bit of geometry in a space on which G acts in a geometric way.
As an example we prove the result of Cannon that cocompact discrete groups
of hyperbolic isometries are automatic; in fact we show this more generally
for fundamental groups of compact manifolds with (not necessarily constant)
strictly negative sectional curvatures.

A path a:[e,b] - X in a metric space X is a quasi-geodesic if it is a
geodesic up to constants; that is, there exists a X such that

1/ K(fz“‘ tl) -K< dx(a(tl),a(tz)) < K(tz— tl) + K
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for all ¢, < t, in [a, b]; in this case o is called a K-quasi-geodesic. A quasi-
geodesic is a ‘geodesic in-the-large’ (hence the adding and subtracting of the
constant K). One of the most important facts about negatively curved spaces
is that quasi-geodesics are close to geodesics.

LEMMA 2 (Morse-Mostow). Let M be a compact manifold with strictly
negative sectional curvatures. Then there exists a constant C = C(K) such
that any finite K-quasi-geodesic o in the universal cover M lies in the C-
neighborhood of the geodesic joining the endpoints of «.

This lemma, implicit in a 1924 paper of Morse ([Mo]), was used in the
proof of Mostow’s rigidity theorem; a proof is given in [Th2]. Note that the
situation is quite different for spaces which are not negatively curved; consider
the logarithmic spiral in the euclidean plane.

If G is the fundamental group of a compact Riemannian manifold M, then
a natural copy of the Cayley graph I's(G) sits inside of the universal cover M
of M; namely, choose a basepoint m € M and a lift m € M of m, put a
vertex at g(m) for each deck transformation g € G, and for each edge from
g to g - s in the Cayley graph connect g(m) and gs(m) by a geodesic in M
(here M is given the metric induced by that on M, so that the deck
transformations act as isometries). It is a fundamental fact that paths in the
Cayley graph I'g(G) that are geodesic are actually quasi-geodesics in M. This
ties the (quasi-)geometry of the fundamental group together with the
(quasi-)geometry of the universal cover.

THEOREM 3. If M is a compact manifold with strictly mnegative
sectional curvatures, and if S is any generating set for G = n,(M), then
the set of geodesic (shortest) words in T's(G) is a regular language, and is
part of an automatic structure for G; in particular G is automatic.

We follow the proof idea given in [Thl].

Proof. We shall prove that the set L of geodesics in I's(G) is a regular
language satisfying the k-fellow traveller property for some k.

By the comment above there is some constant K such that geodesics
u,v € L which represent elements of G at distance one apart in I'g(G) are K-
quasi-geodesics in ]\Z, so by Mostow’s Lemma they lie in a C-neighborhood
of geodesics #” and v’ in M with the same endpoints as u and v; this is the
only place where the strictly negative curvature assumption is used. Now u’
and v’ form two sides of a triangle whose third side has length at most 2K,

by the equation on page 13. Since Mis a non-positively curved space, u” and
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v’ are within Hausdorff distance 2K from each other. Hence u and v are
Hausdorff distance of at most 2K + C + C apart (see figure 6), and from this
it follows easily that, since # and v are geodesics in I's(G), they are k-fellow
travellers for some constant k, and this k depends only on the curvature bound
on M, not on u and v.

1

FIGURE 6

Why geodesics in I's(G) are fellow travellers

Notice that the subwords u; and v; consisting of the first i letters of u and
v are geodesics, and u;v; ' lies in the k-ball B, around the identity in ['s(G).

We now build a finite state automaton W which recognizes precisely the
set of geodesics in I's(G). As state set S of W we take the set of subsets of
the k-ball B, together with a fail state F, let the subset consisting of the
identity be the start state, and take every state of S except for F as an accept
state. Suppose the generator g of the word w is read when W is in the state
T. Then W should go into the fail state if either 7 is the fail state or g € T;
otherwise W should go into the state

{g-ta:te T,ae S u S-1 U {e}}n By

(see figure 7). The idea is to keep track of all paths which are competing with
w for being the shortest path to w; w is rejected as soon as a subword of w
is longer than one of its competitors. The amount of information to remember
is finite since we need to keep track only of word differences, all of which lie
in a finite set (namely B;). More precisely, after reading in the first 7 letters
of w, the current state S; (if it isn’t the fail state) consists of precisely those
elements ¢ of B, which satisfy the property that there is some path of
length i from 1 to w; - ¢ which is a k-fellow traveller with w;; this follows
easily by induction on 1.
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glta 8'a

FIGURE 7

How to determine the new state after being in state 7 and reading the generator g
Here t;,t, € T, ae S u S~1

We claim that the finite state automaton W accepts precisely the set of
geodesics. If the (i + 1)’st generator of w lies in S;, then w; . (hence w) is not
a geodesic since w;,; can be represented by a word of length i. Hence W
accepts every geodesic word. Now suppose that w is not a geodesic; so there
is some i such that w; is a geodesic but there is some path v from 1 to w;,;
which is shorter than the path w;, ; we may assume that v is geodesic. Since
w; and v are geodesics ending a distance one apart in the Cayley graph, they
are k-fellow travellers. Note that v has length at most i, so by padding v we
can make a path v’ of length i which is a k-fellow traveller with w;. But v’
and w;,, = w; - g represent the same group element; hence g € S;. This
shows that the fail state is entered upon reading the smallest initial subword
of w which is not a geodesic; in particular the FSA W accepts only geodesic
words. [

Cannon’s original proof of theorem 3 is based on the notion of ‘cone type’
(see [Cal, Epl]). The idea is that geodesics in a hyperbolic group have only
finitely many asymptotic behaviors (i.e. cone types), so building a geodesic
generator by generator requires looking at a finite set (the set of cone types)
and applying finitely many rules (determining the possible cone types after
adding the next generator).
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