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294 B. FARB

1984 Cannon extended Dehn’s solution to the word problem to cocompact
discrete groups of hyperbolic isometries ([Cal]). Perhaps the main idea of
Cannon’s paper is that one can ‘‘see’’ the Cayley graphs of such groups. What
does it mean to see the Cayley graph of an infinite group? For example, the
Cayley graph of (Z, S) with S = {1} is simply the real line with a vertex at each
integer. When drawing a picture of I's(Z), we draw only the two-ball, say,
and then a trailing line of dots - - - . By this we really mean to repeat the picture
of the two-ball in our heads off to infinity, thinking also of the linear recursion
n—=n+ 1. To ““see’’ the Cayley graph should mean to have a picture of some
finite ball around the origin and some finite machine which tells us how to
piece copies of this ball together out to infinity. Cannon suggested as an open
problem that one might ‘‘Formalize the notion that a Cayley graph can be
described by linear recursion, and devise efficient algorithms for working out
that recursion for many examples.’”’ The idea is that if such a linear recursion
exists, which should happen whenever there is some pattern in the Cayley
graph, then we can build a picture of what the group looks like, and from this
picture we can construct algorithms to do computations in the group, such as
solving the word problem.

The next layer of foundation was provided by Thurston, who gave a formal
definition of the ‘‘linear recursion’’ Cannon spoke of. Thurston did this by
using finite state automata (FSA for short), the simplest type of machines
which have been studied thoroughly by computer scientists for nearly forty
years. It seems interesting that Gilman was independently exploring the use of
finite state automata for normal forms in groups (see, e.g. [Gi]), although with
no (explicit) discussion of geometry. The details of the basic theory of
automatic groups were worked out at Warwick by Epstein, Holt and Paterson.
The use of finite state automata is partly motivated by their success in both
the theory and applications of computer science; most word-processors
(including ‘vi’) construct finite state automata for tasks such as word searches,
and many compilers use FSA during lexical and syntactical analysis. In order
to understand automatic groups we’ll first need to have some understanding
of finite state automata.

3. FINITE STATE AUTOMATA

Given some finite set of letters «/ = {a, ..., a,}, we want to pick out a
nice subset of the set .&/* of all words in the letters a; (one can view o/* as
the free monoid generated by the elements of .27). A subset L C .o7* is called
a language. Informally, a finite state automaton W over <7 is a finite directed
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graph with vertices called stafes, written as small circles; a special vertex called
the start state of W, with the letter ‘s’ (for ‘start’) written inside it; and directed
edges connecting the vertices, each edge labelled with a letter from .«7. For any
given label, each vertex can have at most one edge directed out of it with this
fixed label. Finally, we pick a subset Y of states which we call accept states,
and draw the vertices of accept states as double circles. States not in Y are
referred to as fail states. Examples of some finite state automata are given in
figure 2.
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FIGURE 2

Some finite state automata and their accepted languages

A finite state automaton W gives a language over .7 as follows: If
W = Wow; ... W, is a word with each w; € .7, then beginning at the start state
s, move from state to state by reading along the edge labelled wy, then along
wy, ..., then along w,. If at any time the current state is v, and the next letter
which should be read is w; but there is no edge directed out of v labelled w;,
then w is not accepted by W. If after reading the word w the current state is
an accept state, then w is accepted by W, otherwise w is not accepted by W.
The set of accepted words L = L(W) is said to be the language accepted by
W. Note that if the start state s is an accept state then the empty word is an

element of L. A language which is accepted by a finite state automaton is called
a regular language.
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Regular languages are the simplest, most important languages studied by
computer scientists. They are very special — most languages (i.e., subsets of
o/ *) are not regular. An example of a language over the alphabet «# = {a, b}
which is not regular is the set {a”b": n € Z}; this follows immediately from
the well-known “‘pumping lemma’’ of computer science (see [HU]). Note that
{a"b™: n,m € Z} is regular. The reason why {a"b”: n € Z} is not regular is
that a finite state automaton has no memory, and so cannot know exactly how
many b’s to accept after having accepted n a’s.

There are other ways to define regular languages via certain grammatical
operations and other machines similar to the automata described above (see
[Epl], [E et al.] or [HU]). Different (though equivalent) definitions of regular
languages are useful in different situations, but for us the above definition will
suffice.

Before giving the definition of automatic groups we will need the notion
of a two-variable padded language. Given an alphabet .7, we can add a
padding symbol $ ¢ o7 to form the alphabet .« U {$}, and we can consider
a finite state automaton W as above, but this time with labels in
(LU $) x (LU $)\@G,9%). Given a pair of words (u,0) € * X o *, say
U=1u " U,0=10 "0, with m < n, we pad v with the symbol $ so that
the resulting words have equal length. We will say that (u,v) is accepted by
W if we can read off the edges (u1,01), ..., Um,VUm)s Um+1.9), ..., (U, $) and
end up at an accept state of W. The set of accepted pairs (u,v) is said to be
regular over the (padded) alphabet /. The point of padding is that pairs of
words can be read at equal speeds, even if the words have different lengths.

4. AUTOMATIC GROUPS: DEFINITIONS AND EXAMPLES

The definition of automatic group involves only finite state automata. We
will later show this to be equivalent to a more geometric, and perhaps easier
to understand, condition.

Let G be a group with finite generating set </ ={a,, ..., a,} such that
o/ actually generates G as a monoid. ./ is most often chosen as
o =8 u S~ where S is a finite set of (group) generators for G and S !
is the set of inverses of the elements of S. Notice that there is a natural map
from «/*, the free monoid on .7, to the group G which takes a word to the
group element which it represents; we will denote this map by w— w. G is an
automatic group if the following conditions hold:
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