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THE CATEGORY OF NILMANIFOLDS

by John OPREA

ABSTRACT. The techniques of rational homotopy theory are used to
compute the category of a nilmanifold: cat(M) = dim M = rank(w;M). This
information is of interest to dynamicists since the theorem of Lusternik-
Schnirelmann then shows that the number of critical points of a smooth
function of M is bounded below by rank(m;M) + 1.

INTRODUCTION

As a first step to understanding the structure of certain dynamical systems
on nilmanifolds, one might hope to have computable lower bounds on the
number of critical points of smooth functions. Of course, one is then led to
the Lusternik-Schnirelmann definition of category and their well-known result
that category (+ 1) is such a bound. Unfortunately, category is rarely
computable, so those who require numerical bounds often employ the fact that
category majorizes cuplength. Hence cuplength (which, generally, is a more
computable homotopy invariant than category) is the numerical invariant
frequently sought for in order to provide a lower bound for the number of
critical points of smooth functions on a manifold.

Indeed, some time ago, for the reasons above, Chris McCord asked me if
I knew of a formula for the cuplength of a nilmanifold. I did not then, and
after many computations I do not now! Thus, I pose:

QUESTION. What is the cuplength (with Q-coefficients say) of a
nilmanifold?

Suprisingly, however, the need for such knowledge by dynamicists is
obviated by the following.
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THEOREM 1. If M is a (compact) nilmanifold, then cat(M)
= dim(M) = rank(nm,M).

Hence, the best possible result which Lusternik-Schnirelmann theory can
provide for nilmanifolds is the immediate.

COROLLARY. The number of critical points of a smooth function on a
(compact) nilmanifold M is bounded below by rank(m,M) + 1.

In fact, Theorem 1 was announced for all K(m, 1)’s by Eilenberg and Ganea
[11]. Unfortunately, details of the proofs of their three fundamental proposi-
tions never appeared, thus contributing, I believe, to the ignorance of the result
among the dynamicists and topologists of today. Indeed, this paper was
originally written in response to Chris McCord’s question and without
knowledge of the Eilenberg-Ganea result. Furthermore, in looking at the
Eilenberg-Ganea propositions, it is difficult to see the relationship between the
structures of m and K(m, 1) and the consequent determination of category as
rank(m). I hope that the approach of this paper will remedy this defect, at least
in the case of nilmanifolds. The beautiful structure theory of nilmanifolds (i.e.
finitely generated torsionfree nilpotent groups) is ideally suited for an
approach in terms of minimal models. In fact, in some sense, this paper is
simply an exposition of just how well rational homotopy theory and
nilmanifold theory fit together (in the representative situation of determining
category).

Theorem 1 will be given a simple (‘‘up to’’ the machinery of rational
homotopy theory) proof in §4. Since this paper is written for workers in
dynamical systems, I have tried to make it somewhat self-contained.
Therefore, §1 and §2 are devoted to recollections on category and its rational
homotopy description respectively. §3 recollects structural knowledge of
nilmanifolds and §5 presents an analogue of Theorem 1 for iterated principal
bundles. (The basic reference for the rational homotopy version of L.S.
category is [3]; I have attempted to cull the essential ingredients for the proof
of Theorem 1, but the reader will find other interesting applications in that
work. Also see [2].)

§1. CATEGORY

The category of a space M, cat(M), is the least integer m so that M is
covered by m + 1 open subsets each of which is contractible within M.

An equivalent definition (at least for the spaces we consider here) was given
by G. Whitehead (see [10]): Let M™+! denote the (m + 1)-fold product and
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