Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 38 (1992)

Heft: 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: NOTES SUR L'INVARIANT DE CASSON DES SPHÈRES

D'HOMOLOGIE DE DIMENSION TROIS

Autor: Guillou, L. / Marin, A.

Kapitel: §2. Scindement de Heegaard de \$\Sigma(a_1,a_2,a_3)\$

DOI: https://doi.org/10.5169/seals-59492

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

§2. SCINDEMENT DE HEEGAARD DE $\Sigma(a_1, a_2, a_3)$

2.A. DESCRIPTION GÉOMÉTRIQUE

On considère la présentation de chirurgie de $\Sigma = \Sigma(a_1, a_2, a_3)$ indiquée par la figure 2:

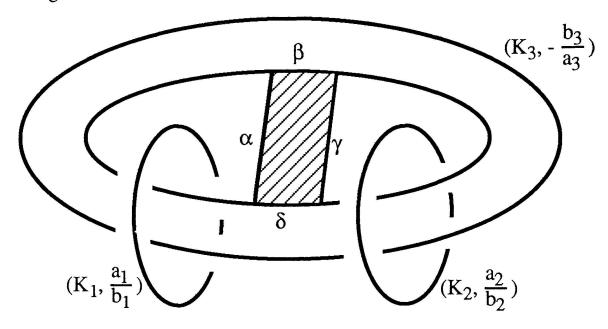


FIGURE 3

Notations. Considérons la figure 3. On note K_1, K_2, K_3 les composantes de l'entrelacs de la figure 2.

On décompose le méridien de K_3 en $I\coprod_{\partial I=\partial I'}I'$ où I et I' sont des intervalles d'intérieurs disjoints.

 α , β , γ et δ sont les arêtes du carré hachuré C. (Situé dans le plan de la figure 3: α et γ sont des intervalles sur les méridiens de K_1 et K_2 respectivement et β et δ des intervalles sur le parallèle planaire à K_3 .)

Pour $i = 1, 2, 3, T_i$ désigne le tore plein recollé sur le bord du voisinage tubulaire de K_i lors de la chirurgie prescrite par le diagramme. Soit W_1 et W_2 les deux corps en anses suivants:

$$W_1 = (T_1 \coprod T_2) \bigcup_{I \times (\alpha \coprod \gamma)} I \times C$$
, $W_2 = T_3 \bigcup_{I' \times (\beta \coprod \delta)} I' \times C$

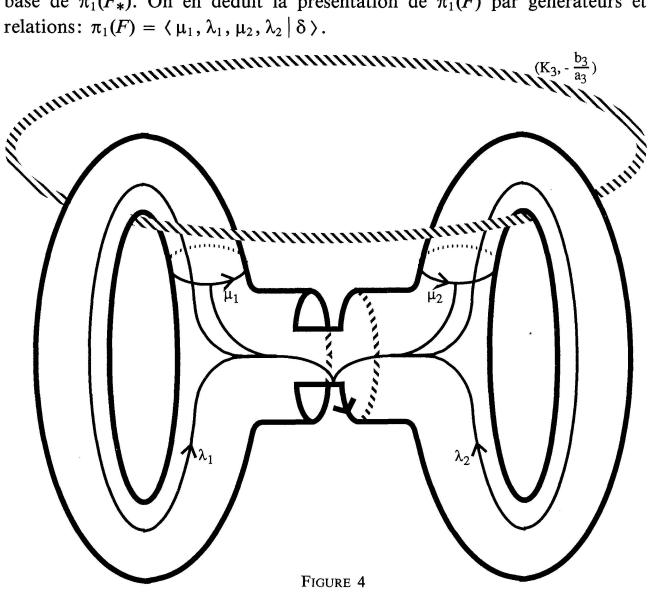
et F le bord commun à W_1 et à W_2 (voir fig. 4): $W_1 \cup W_2$ est un scindement de Heegaard de $\Sigma(a_1, a_2, a_3)$.

Remarque. Si on utilise la terminologie de Seifert, le méridien de K_3 est une fibre ordinaire, les tores T_i sont des voisinages tubulaires des fibres

exceptionnelles et le scindement de Heegaard est réalisé en prenant pour W_1 , une somme connexe le long des bords des voisinages de deux fibres exceptionnelles et pour W_2 l'adhérence du complémentaire de W_1 .

2.B. DESCRIPTION DES GROUPES FONDAMENTAUX ASSOCIÉS

 $\pi_1(F_*)$ est le groupe libre à quatre générateurs μ_1 , λ_1 , μ_2 , λ_2 décrits par la figure 4. Le bord orienté δ de F_* s'écrit 1) $[\lambda_1^{-1}, \mu_1]$ $[\mu_2^{-1}, \lambda_2^{-1}]$ dans cette base de $\pi_1(F_*)$. On en déduit la présentation de $\pi_1(F)$ par générateurs et relations: $\pi_1(F) = \langle \mu_1, \lambda_1, \mu_2, \lambda_2 | \delta \rangle$.



 F_* plongée dans S^3 et les générateurs de $\pi_1(F_*)$

Conventions

i(,) désigne la forme d'intersection sur $H_1(F)$; un élément de $\pi_1(F)$ et son image dans $H_1(F)$ par l'homomorphisme d'Hurewicz sont notés de la même manière, leur nature est précisée par le contexte.

¹) Attention: les lacets sont composés dans l'ordre opposé à l'ordre usuel et [a, b] désigne le commutateur $a^{-1}b^{-1}ab$ (cf. les conventions avant 3.5).

Les deux éléments j_1 et j_2 de $\pi_1(W_1)$ représentés par des lacets de F respectivement homotopes aux âmes de T_1 et de T_2 et orientés de sorte que $i(a_1\mu_1 + b_1\lambda_1, j_1)$ et $i(a_2\mu_2 + b_2\lambda_2, j_2)$ valent 1, forment une base du groupe libre $\pi_1(W_1)$.

Soit $\lambda_3 = \mu_1 \mu_2$ et $\mu_3 = \lambda_2$ les deux éléments de $\pi_1(F)$ représentés respectivement par une longitude et un méridien de K_3 . L'élément j_3 de $\pi_1(W_2)$ représenté par un lacet de F homotope à l'âme de T_3 , orienté de sorte que $i(a_3\lambda_3 - b_3\mu_3, j_3)$ vale 1, et l'élément j_4 de $\pi_1(W_2)$ représenté par μ_1 forment une base du groupe libre $\pi_1(W_2)$.

L'inclusion i_{1_*} de $\pi_1(F)$ dans $\pi_1(W_1)$ s'écrit alors:

$$i_{1_{*}}(\mu_{1}) = j_{1}^{-b_{1}}$$
 $i_{1_{*}}(\mu_{2}) = j_{2}^{-b_{2}}$
 $i_{1_{*}}(\lambda_{1}) = j_{1}^{a_{1}}$ $i_{1_{*}}(\lambda_{2}) = j_{2}^{a_{2}}$

tandis que l'inclusion i_{2*} de $\pi_1(F)$ dans $\pi_1(W_2)$ s'écrit:

$$i_{2_{*}}(\mu_{1}) = j_{4}$$
 $i_{2_{*}}(\mu_{2}) = j_{4}^{-1}j_{3}^{b_{3}}$ $i_{2_{*}}(\lambda_{1}) = j_{3}^{a_{3}}$ $i_{2_{*}}(\lambda_{2}) = j_{3}^{a_{3}}$ $(i_{2_{*}}(\mu_{1}\mu_{2}) = j_{3}^{b_{3}})$.

2.C. Description des espaces de représentations associés

 $R_* = R(\pi_1(F_*))$ est identifié à $(S^3)^4$ grâce à la base $(\mu_1, \lambda_1, \mu_2, \lambda_2)$: à une représentation ρ de R_* correspond le quadruplet $(\rho(\mu_1), \rho(\lambda_1), \rho(\mu_2), \rho(\lambda_2))$. De la même manière, Q_1 et Q_2 sont identifiés à $(S^3)^2$ grâce aux bases (j_1, j_2) et (j_3, j_4) .

Ces identifications orientent naturellement Q_1 , Q_2 et R_* .

D'après 3.4 (cf. la preuve de 3.8 i)) et les expressions de i_{1_*} et de i_{2_*} , on a:

$$(Q_1, Q_2)_{R_*} = \det \begin{pmatrix} -b_1 & a_1 & 0 & 0 \\ 0 & 0 & -b_2 & a_2 \\ 0 & a_3 & b_3 & a_3 \\ 1 & 0 & -1 & 0 \end{pmatrix} = b_1 a_2 a_3 + a_1 b_2 a_3 + a_1 a_2 b_3 = 1$$

et donc: $\lambda(\Sigma(a_1, a_2, a_3)) = \frac{1}{2} \langle \hat{Q}_1, \hat{Q}_2 \rangle_{\hat{R}}$.

Le calcul consiste maintenant à évaluer $\langle \hat{Q}_1, \hat{Q}_2 \rangle_{\hat{R}}$.

§3. ETUDE DE $\hat{Q}_1 \cap \hat{Q}_2$

Cette intersection est $\hat{R}(\pi_1(\Sigma))$, on utilise, pour simplifier les calculs et les notations, les conventions suivantes:

 a_1 et a_2 sont impairs (quitte à permuter a_1 , a_2 et a_3 qui jouent le même rôle).

On peut alors choisir b_1 et b_2 pairs, b_3 est alors impair.

Le groupe SU(2) est naturellement identifié à la sphère unité du corps \mathbf{H} des quaternions. On écrit les éléments de $SU(2) = S^3$ sous la forme $\exp(x)$ où x est un quaternion pur.

3.A. Description ensembliste de $\hat{Q}_1 \cap \hat{Q}_2$

Cette description montrera en particulier le lemme suivant:

LEMME. Il existe une bijection naturelle de $\hat{Q}_1 \cap \hat{Q}_2$ dans l'ensemble E des points entiers, intérieurs au tétraèdre $T(a_1, a_2, a_3)$, et dont les deux premières coordonnées sont paires.

Démonstration. Description des éléments de $\hat{Q}_1 \cap \hat{Q}_2$:

Le groupe $\pi_1(\Sigma)$ admet la présentation par générateurs et relations suivante:

$$\pi_1(\Sigma) = \langle \mu_1, \mu_2, h | h \text{ central}, \ \mu_1^{a_1} = h^{-b_1}, \mu_2^{a_2} = h^{-b_2}, (\mu_1 \mu_2)^{a_3} = h^{b_3} \rangle$$

$$(h = \lambda_1 = \lambda_2);$$

les représentations irréductibles de $\pi_1(\Sigma)$ doivent associer 1 ou (-1) à l'élément central h de $\pi_1(\Sigma)$, on en déduit aisément que (cf. le lemme B.3.2) chaque classe de $\hat{R}(\pi_1(\Sigma))$ contient exactement un représentant ρ tel que:

$$\rho(\mu_1) = \exp\left(\frac{ix_1\pi}{a_1}\right)$$

$$\rho(\mu_2) = \exp\left(\frac{(ir+j)\sqrt{1-r^2})x_2\pi}{a_2}\right)$$
et $\operatorname{Re}(\rho(\mu_1\mu_2))\left(=\cos\left(\frac{x_1\pi}{a_1}\right)\cos\left(\frac{x_2\pi}{a_2}\right) - r\sin\left(\frac{x_1\pi}{a_1}\right)\sin\left(\frac{x_2\pi}{a_2}\right)\right)$

$$= \cos\left(\frac{x_3\pi}{a_3}\right) \text{ (et donc } \rho(h) = (-1)^{x_3})$$

où x_1, x_2 et x_3 sont des entiers positifs non nuls respectivement strictement inférieurs à a_1, a_2 et a_3 ,

 x_1 et x_2 sont pairs,

et r est un réel strictement compris entre -1 et 1.

Ceci définit une bijection ϕ de $\hat{Q}_1 \cap \hat{Q}_2$ dans l'ensemble des triplets (x_1, x_2, x_3) de $(2\mathbb{Z})^2 \times \mathbb{Z}$ qui vérifient:

(*)
$$\begin{cases} \forall i \in \{1, 2, 3\}, 0 < x_i < a_i, \\ \exists r \in]-1, 1[\text{ tel que:} \cos\left(\frac{x_1\pi}{a_1}\right)\cos\left(\frac{x_2\pi}{a_2}\right) - r\sin\left(\frac{x_1\pi}{a_1}\right)\sin\left(\frac{x_2\pi}{a_2}\right) = \cos\left(\frac{x_3\pi}{a_3}\right) \end{cases}$$

$$(*) \Leftrightarrow \begin{cases} \forall i \in \{1,2,3\}, 0 < x_i < a_i \\ \cos\left(\left(\frac{x_1}{a_1} + \frac{x_2}{a_2}\right)\pi\right) < \cos\left(\frac{x_3\pi}{a_3}\right) < \cos\left(\left(\frac{x_1}{a_1} - \frac{x_2}{a_2}\right)\pi\right) \end{cases}.$$

$$(*) \Leftrightarrow \left| \begin{array}{c} \frac{x_1}{a_1} - \frac{x_2}{a_2} \right| < \frac{x_3}{a_3} < \min \left(\frac{x_1}{a_1} + \frac{x_2}{a_2} \right), 2 - \left(\frac{x_1}{a_1} + \frac{x_2}{a_2} \right) \right|$$

$$\begin{pmatrix} \frac{x_2}{a_2} + \frac{x_3}{a_3} - \frac{x_1}{a_1} > 0 \\ \frac{x_3}{a_3} + \frac{x_1}{a_1} - \frac{x_2}{a_2} > 0 & \text{et} & \frac{x_1}{a_1} + \frac{x_2}{a_2} + \frac{x_3}{a_3} < 2 \\ \frac{x_1}{a_1} + \frac{x_2}{a_2} - \frac{x_3}{a_3} > 0 \end{pmatrix}$$

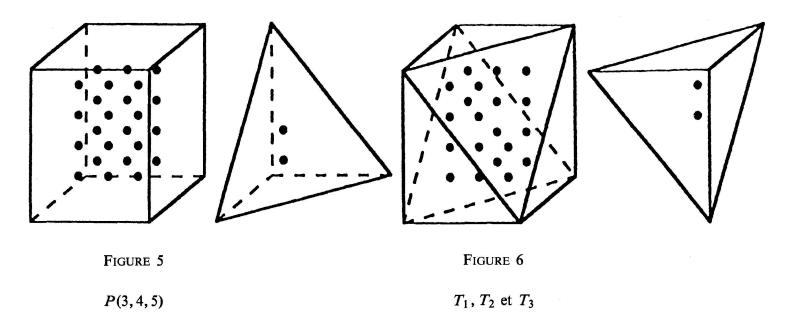
(*) \Leftrightarrow (x_1, x_2, x_3) est intérieur à $T(a_1, a_2, a_3)$.

LEMME. Le cardinal de E est égal à $\frac{1}{4}\tau(a_1, a_2, a_3)$.

Démonstration. Soit s_1 (resp. s_2) la symétrie axiale de $T(a_1, a_2, a_3)$ qui, à (x_1, x_2, x_3) , associe le point $(a_1 - x_1, a_2 - x_2, x_3)$ (resp. $(a_1 - x_1, x_2, a_3 - x_3)$); s_1, s_2 et s_2s_1 transforment respectivement $\overset{\circ}{T}(a_1, a_2, a_3) \cap ((2\mathbb{Z})^2 \times \mathbb{Z})$ en $\overset{\circ}{T}(a_1, a_2, a_3) \cap ((2\mathbb{Z} + 1)^2 \times \mathbb{Z})$, $\overset{\circ}{T}(a_1, a_2, a_3) \cap ((2\mathbb{Z} + 1) \times 2\mathbb{Z} \times \mathbb{Z})$ et $(\overset{\circ}{T}(a_1, a_2, a_3) \cap ((2\mathbb{Z}) \times (2\mathbb{Z} + 1) \times \mathbb{Z})$; le cardinal de $\overset{\circ}{T}(a_1, a_2, a_3) \cap \mathbb{Z}^3$ est donc égal à quatre fois celui de $\overset{\circ}{T}(a_1, a_2, a_3) \cap ((2\mathbb{Z})^2 \times \mathbb{Z})$. \square

Démonstration de C.2. Soit $\pi = (a_1 - 1) (a_2 - 1) (a_3 - 1)$ le cardinal de $P = [0, a_1[\times]0, a_2[\times]0, a_3[\cap \mathbb{Z}^3]$.

Soit τ_k le cardinal de $T_k = \{(x_1, x_2, x_3) \in P \mid (k-1) < \frac{x_1}{a_1} + \frac{x_2}{a_2} + \frac{x_3}{a_3} < k\}$.



Comme les entiers a_1 , a_2 et a_3 sont premiers entre eux deux à deux, les hyperplans de définition de $T(a_1, a_2, a_3)$, T_1 , T_2 et T_3 ne rencontrent pas P; on en déduit que P est réunion disjointe de T_1 , T_2 et T_3 (donc: $\pi = \tau_1 + \tau_2 + \tau_3$) et que le cardinal de $P \setminus T(a_1, a_2, a_3)$ est $(\pi - \tau)$. $(\tau = \tau(a_1, a_2, a_3))$

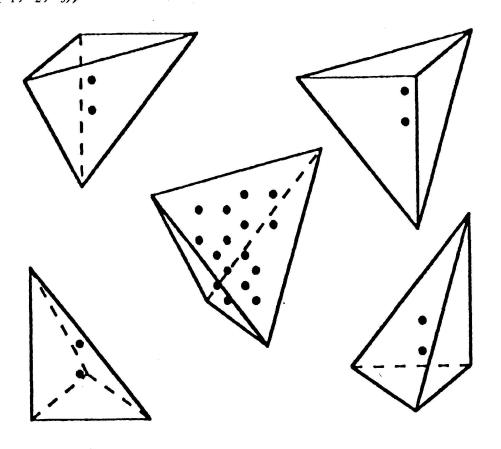


FIGURE 7

T(3,4,5) et les quatre composantes de $P \setminus T(3,4,5)$

De plus, comme les symétries du parallélépipède P opèrent transitivement sur ses sommets en laissant le réseau \mathbb{Z}^3 invariant, T_1 est isomorphe à T_3 et aux quatre composantes de $P \setminus T(a_1, a_2, a_3)$, d'où

$$\tau_1 = \tau_3 = \frac{1}{4}(\pi - \tau)$$
, puis $\sum_{k=1}^{3} (-1)^k \tau_k = \pi - 4\tau_1 = \tau$.

Démonstration de C.3. Un théorème de Mordell (Theorem 5 du paragraphe 3E de [RG]) donne l'expression arithmétique de $\tau_1(a_1, a_2, a_3)$:

$$\tau_{1}(a_{1}, a_{2}, a_{3}) = -\left[s(a_{1}a_{2}, a_{3}) + s(a_{3}a_{1}, a_{2}) + s(a_{2}a_{3}, a_{1})\right] + \frac{a_{1}a_{2}a_{3}}{12} \left(\sum_{i=1}^{3} \frac{1}{a_{i}^{2}}\right) + \frac{1}{12a_{1}a_{2}a_{3}} + \frac{a_{1}a_{2}a_{3}}{6} - \frac{a_{1}a_{2} + a_{3}a_{1} + a_{2}a_{3}}{4} + \frac{a_{1} + a_{2} + a_{3}}{4} - \frac{1}{2}.$$

La relation entre $\tau(a_1, a_2, a_3)$ et $\tau_1(a_1, a_2, a_3)$:

$$\ll \tau(a_1, a_2, a_3) = (a_1 - 1) (a_2 - 1) (a_3 - 1) - 4\tau_1(a_1, a_2, a_3)$$

permet alors de conclure.

3.B. Etude du voisinage de $\hat{Q}_1 \cap \hat{Q}_2$ dans \hat{R}

PROPOSITION. \hat{Q}_1 et \hat{Q}_2 sont transverses dans \hat{R} et le signe associé à tout point de l'intersection est «moins».

Démonstration. Soit $\hat{\rho}$ un point de $\hat{Q}_1 \cap \hat{Q}_2$; supposons connues des cartes orientées F_1, F_2 et F de \hat{Q}_1, \hat{Q}_2 et \hat{R} au voisinage de $\hat{\rho}$; il suffit de montrer que le déterminant de la matrice M de l'application linéaire

L:
$$\mathbf{R}^{3} \oplus \mathbf{R}^{3} \to \mathbf{R}^{6}$$

 $(x_{1}, x_{2}) \mapsto D_{|F_{1}(\hat{\rho})}(F \circ \hat{i}_{1} \circ F_{1}^{-1}) \cdot x_{1} + D_{|F_{2}(\hat{\rho})}(F \circ \hat{i}_{2} \circ F_{2}^{-1}) \cdot x_{2}$

est strictement négatif.

On commence donc par définir des cartes F_1 , F_2 et F de sorte que cette matrice s'écrive le plus simplement possible (on choisit les représentants des classes de conjugaison comme au début du paragraphe C.3.A.):

LEMME. «Cartes au voisinage d'un point $\hat{\rho}$ de $\hat{Q}_1 \cap \hat{Q}_2$ » On note:

$$\varepsilon = \rho(\lambda_1) = \rho(h),$$

 θ_1 , θ_2 , θ_3 , les trois angles de]0, $\pi[$ tels que $\rho(\mu_1)$, $\rho(\mu_2)$, $\rho(\lambda_3) = \rho(\mu_1 \mu_2)$ soient respectivement conjugués à $\exp(i\theta_1)$, $\exp(i\theta_2)$ et $\exp(i\theta_3)$

et ε_1 , ε_2 , ε_3 les trois signes tels que $\sin(-b_1\varepsilon_1\theta_1)$, $\sin(-b_2\varepsilon_2\theta_2)$ et $\sin(b_3\varepsilon_3\theta_3)$ soient strictement positifs.

- 1. Le difféomorphisme $F_1(\varepsilon_1, \varepsilon_2)$ de \hat{Q}_1 dans $\varepsilon_1]0, \pi[\times \varepsilon_2]0, \pi[\times]-1, +1[$ qui, à la classe de $(\exp(i\varphi), \exp((ir+j\sqrt{1-r^2})\theta)),$ associe (φ, θ, r) , définit une carte orientée de \hat{Q}_1 .
- 2. Le difféomorphisme F_2 de \hat{Q}_2 dans $\varepsilon_3]0, \pi[\times] -1, +1[\times]0, \pi[$ qui, à la classe de $(\exp((ir + \exp(i\varphi)j\sqrt{1-r^2})\theta), \exp(i\varphi)),$ associe (φ, r, θ) , définit une carte orientée de \hat{Q}_2 .
- 3. L'application F de \hat{R} dans $(]0,\pi[\times]-1,+1[)^2\times]-1,+1[^2$ qui, à la classe de l'élément

 $(\exp(i\varphi), \varepsilon(g_1 + ig_i + jg_j + kg_k), \exp((ir + j\sqrt{1 - r^2})\theta), \varepsilon(h_1 + ih_i + jh_j + kh_k))$ associe l'élément $(\varphi, g_i, \theta, r, h_j, h_k)$ définit une carte orientée au voisinage de $\hat{\rho}$ dans \hat{R} .

Démonstration.

1. Supposons d'abord ε_1 et ε_2 égaux à 1.

Comme \tilde{Q}_1 est connexe, pour montrer que $F_1(1, 1)$ est une carte de \hat{Q}_1 orienté comme base du SO(3)-fibré $(\tilde{Q}_1 \to \hat{Q}_1)$, il suffit de calculer le jacobien (positif!) de l'application tangente en $\left(\frac{\pi}{2}, \frac{\pi}{2}, 0, 1\right)$ du difféomorphisme

$$G_1:]0, \pi[^2 \times]-1, +1[\times SO(3) \to \tilde{Q}_1,$$

$$(\varphi, \theta, r, \gamma) \mapsto (\exp(i\varphi).\gamma, \exp((ir+j\sqrt{1-r^2})\theta).\gamma).$$

Pour conclure la démonstration de 1. dans les cas où $(\varepsilon_1, \varepsilon_2)$ est différent de (1, 1), il suffit de remarquer que si $k(\varepsilon_1, \varepsilon_2)$ est le difféomorphisme orienté

$$k(\varepsilon_1, \varepsilon_2)$$
: $\varepsilon_1]0, \pi[\times \varepsilon_2]0, \pi[\times]-1, +1[\rightarrow]0, \pi[^2 \times]-1, +1[(\varphi, \theta, r) \mapsto (\varepsilon_1 \varphi, \varepsilon_2 \theta, \varepsilon_1 \varepsilon_2 r),$

le composé $k(\varepsilon_1, \varepsilon_2) \circ F_1(\varepsilon_1, \varepsilon_2)$ est égal à $F_1(1, 1)$.

2. Se déduit de 1, si l'on remarque que

$$(\exp(i\varphi), \exp((ir + \exp(i\varphi)j\sqrt{1-r^2})\theta))$$

est conjugué à $(\exp(i\varphi), \exp((ir+j\sqrt{1-r^2})\theta))$.

3. a) Soit $U =]0, \pi[\times S^3 \times]0, \pi[\times]-1, 1[\times S^3,$ soit G le difféomorphisme

$$G: U \times SO(3) \rightarrow G(U \times SO(3)) \subset R_*$$

$$((\varphi, g, \theta, r, h), \gamma) \mapsto (\exp(i\varphi) \cdot \gamma, \varepsilon g \cdot \gamma, \exp((ir + j\sqrt{1 - r^2})\theta) \cdot \gamma, \varepsilon h \cdot \gamma),$$

et soit G_r la restriction de G à $U \times \{1\}$, p désigne la projection de R_* sur \hat{R}_* , et p_r désigne sa restriction de $G(U \times \{1\})$ dans $p \circ G(U \times \{1\})$; d'après $1, p_r \circ G_r$ est un difféomorphisme qui renverse l'orientation.

b) De plus, le calcul de l'application tangente en $p_r^{-1}(\hat{\rho})$ de ∂ montre que l'application (qui définit implicitement ψ)

$$(\partial \times \psi) \circ G_r : (U \times \{1\}) \to S^3 \times (]0, \pi[\times] - 1, +1[)^2 \times] - 1, +1[^2$$

$$u = (\varphi, g = (g_1 + ig_i + jg_j + kg_k), \theta, r, h = (h_1 + ih_i + jh_j + kh_k))$$

$$\mapsto (\partial G_r(u) = [g^{-1}, \exp(i\varphi)] [\exp(-(ir + j\sqrt{1 - r^2})\theta), h^{-1}], (\varphi, g_i, \theta, r, h_j, h_k))$$

est un difféomorphisme qui renverse l'orientation au voisinage de $G_r^{-1}p_r^{-1}(\hat{\rho})$.

On en déduit que $F = \psi \circ p_r^{-1}$ définit une carte orientée de \hat{R} au voisinage de la classe de $\hat{\rho}$ de la manière suivante:

Si l'on écrit l'inverse de G de $G(U \times SO(3))$ dans $U \times SO(3)$ sous la forme $(G_r^{-1} \circ p_r^{-1} \circ p) \times \tilde{\gamma}$ (où $\tilde{\gamma}$ est le composé de G^{-1} et de la projection sur SO(3)) l'application $\tilde{\chi} = [(\partial \times \psi) \circ p_r^{-1} \circ p] \times \tilde{\gamma}$ est, d'après a) et b), un difféomorphisme orienté d'un voisinage de la classe de $\hat{\rho}$ dans R_* dans un ouvert de $S^3 \times \mathbb{R}^6 \times SO(3)$.

Le composé $(\chi = \partial \times (\psi \circ p_r^{-1} \circ p) \times \tilde{\gamma})$ de $\tilde{\chi}$ et du difféomorphisme orienté de $S^3 \times \mathbf{R}^6 \times SO(3)$, qui à (g, x, γ) associe (g, γ, x, γ) , est alors un difféomorphisme orienté d'un voisinage de la classe de $\hat{\rho}$ dans R_* dans un ouvert de $S^3 \times \mathbf{R}^6 \times SO(3)$ tel que:

$$\partial(\chi^{-1}(g,x,\gamma)) = g \quad \text{et} \quad \chi([\chi^{-1}(g,x,\gamma)].\gamma') = (g,x,\gamma\gamma').$$

Ceci, d'après les conventions d'orientation de 3.11, permet de conclure la démonstration du lemme.

Avec ces cartes, la matrice M s'écrit:

$$\begin{pmatrix} ? & 0 & 0 & t_4 & 0 & ? \\ t_3 & 0 & 0 & 0 & 0 & ? \\ ? & ? & 0 & ? & t_6 & ? \\ ? & ? & t_2 & ? & ? & ? \\ ? & t_5 & 0 & ? & 0 & ? \\ 0 & 0 & 0 & 0 & 0 & t_1 \end{pmatrix}$$

avec
$$t_1 = a_3 \sin(\varphi) \sqrt{1 - r^2}$$
 $t_3 = a_1$ $t_5 = a_2 \sqrt{1 - r^2}$
$$t_2 = 1$$

$$t_4 = 1$$

$$t_6 = -\frac{\sin(\varphi)\sin(\epsilon_3 b_3 \theta_3)}{\sqrt{1 - x^2}}$$

$$(x = \cos(\varphi)\cos(\epsilon_3 b_3 \theta_3) + r\sin(\varphi)\sin(\epsilon_3 b_3 \theta_3)),$$

son déterminant qu'on peut calculer en factorisant successivement les t_i dans l'ordre indiqué par leurs indices est égal à

$$-\frac{a_1 a_2 a_3 \sin^2(\varphi) (1-r^2) \sin(\epsilon_3 b_3 \theta_3)}{\sqrt{1-x^2}}$$

il est donc bien strictement négatif.

BIBLIOGRAPHIE

- [AB] ATIYAH, M. and R. BOTT. The Yang-Mills equations over a Riemann surface. *Phil. Trans. Royal Soc. London 308* (1987), 523-615.
- [AMcC] Akbulut, S. and J. D. Mc Carthy. Casson's invariant for oriented homology 3-spheres, an exposition. Mathematical Notes 36, Princeton University Press 1990.
- [BL] BOYER, S. and D. LINES. Surgery formulae for Casson's invariant and extension to homology lens spaces. J. Für die Reine und angewandte Mathematik 405 (1990), 181-220.
- [CLM] CAPPELL, S., R. LEE and E. MILLER. A symplectic geometry approach to generalized Casson's invariants of 3-manifolds. *B.A.M.S.* 22 (1990), 269-275.
- [D] DOLD, A. Lectures on algebraic topology. Die Grundlehren der mathematischen Wissenschaften, Band 200 Springer-Verlag, 1972.
- [FS] FINTUSHEL, R. and R. STERN. Instanton homology of Seifert fibered homology three sphere. *Proc. London Math. soc.*, 3rd series 61 (1990), 109-137.