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SPHERES D’HOMOLOGIE DE DIMENSION TROIS 277

lier une approche du calcul de la caractéristique d’Euler de I/é(nl()l)). D’autre
part, K. Walker, dans [W], a défini, pour toute sphére d’homologie entiére
(et méme rationnelle!), une structure complexe sur ’espace tangent 7. R pour
laquelle 7 él et 7 éz sont totalement réels, ceci permet de justifier I’interven-
tion de la caractéristique d’Euler de chaque composante connexe de I/é(nl(Z))
dans I’expression de I’invariant de Casson de ¥; il pourrait &tre intéressant de
comprendre pourquoi les caractéristiques d’Euler de toutes les composantes
apparaisent avec le méme signe...

Remarque. Le calcul effectué ci-dessous et la formule de chirurgie de
Casson 1.3.3 suffisent pour calculer I’invariant de Casson de toutes les sphéres
d’homologie entiere fibrées de Seifert (voir [FMS] et [NW]). En fait, la généra-
lisation par K. Walker de I’invariant de Casson et de la formule de chirurgie
1.3.3 ([W]) permettent un calcul beaucoup plus simple de ce nouvel invariant
généralisé pour toutes les sphéres d’homologie rationnelle fibrées de Seifert
(voir [L]).

Je remercie M. Boileau, qui m’a décrit le scindement de Heegaard du para-
graphe 2, L. Guillou, A. Marin, qui m’a suggéré le calcul du paragraphe 3.A,
et P. Vogel.

§1. PRESENTATION DES ESPACES ET ENONCE DU THEOREME

Notations. Dans cet appendice, a;,a, et a; désigneront trois entiers
positifs deux a deux premiers entre eux.

On note X(a;, a,, a;) la sphére de Brieskorn qui admet les deux présenta-
tions de chirurgie équivalentes (voir [Rf] chapitre 9 § G):
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ou by, b, et by sont trois entiers qui vérifient
(E): biara; + a1b,as + ajayb; = 1.

Remarque. On vérifie aisément que la variété ainsi présentée est indépen-
dante du choix du triplet d’entiers (b;, by, b3) qui vérifie (E) (on peut, par
exemple, choisir arbitrairement, b, parmi les inverses modulo a; de a,a;, et
b, parmi les inverses modulo a, de a,a;, b; est alors I'unique inverse modulo
a; de a,a; tel que (E) soit vérifiée.)

Les fibrés de Seifert a trois fibres exceptionnelles, sphéres d’homologie
entiére, s’écrivent tous sous la forme =+ X(a;, a,,a;) avec trois entiers
a,, a,, a; premiers entre eux (voir [Sf]). La relation A(— M) = — A(M) nous
permet de ne calculer que I’invariant de Casson de X(a,, a,, a3).

Si on note t(a,, a,, a;) le nombre de points a coordonnées entiéres inté-
rieurs au tétraédre de R3, T(a,, a,, a3), de sommets (0,0, 0), (0, a;, as),
(a1, 0, a3) et (a;, a,,0), on a le résultat:

C.1. THEOREME. L’invariant de Casson de X(a,,a,,a;) est égal a

1
- (g) t(a;, @z, a3).

La fonction (., .,.) est ’opposée de la fonction #( ., ., .) dite de Brieskorn

décrite dans [HZ], on peut ’exprimer a I’aide des formules qui suivent:

3
C.2. t(ay, az, a3) = Z (— D*# {01, x,x3) € 73N 10, a
k=1

X1 X3 X3
x 10, [ X 10, a5[ | (k—1) < — + =+ — < k}
a, a) a;

(F. Hirzebruch et D. Zagier expriment la fonction de Brieskorn ?(a;, a;, as)
sous (’opposée de) cette forme dans [HZ].)

3. (a1, ar, a3) = 4[s(a1az, a3) + s(azay, @) + s(azas, a1)]
a,a,a 301 1
+—1-Y 5] - +1
3 i=14d; 301(1203

ou s désigne la somme de Dedekind:

7] i i 0 si xeZ
s(g,p)= X |- h pour p, g € Z avec ((x)) = 1,
| i=1 \\D p x—EX)— Esmon

ou E(x) est la partie entiere de x.
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