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APPENDICE C

par Christine LESCOP

UN CALCUL ELEMENTAIRE DE L’INVARIANT DE CASSON
DES SPHERES D’HOMOLOGIE ENTIERE FIBREES DE SEIFERT
A TROIS FIBRES EXCEPTIONNELLES

§ 0. INTRODUCTION

Le but de cet appendice est de présenter un calcul direct (& partir de la
construction de la partie 3.B) de I’invariant de Casson des fibrés de Seifert a
3 fibres exceptionnelles, sphéres d’homologie entiére.

L’ensemble des classes de représentations irréductibles du groupe fonda-
mental de ces fibrés a un cardinal fini calculé, géométriquement au para-
graphe C.3.A, et différemment par S. Boyer et D. Lines dans I’appendice B
de [BL].

Avec les notations de 3.B(en supposant arrétés les différents choix), 1’étude
du voisinage de Q1 N Qz dans R faite au paragraphe C.3.B, montre que,
dans ce cas, les espaces Q1 et Q2 se coupent transversalement dans R et tou-
jours avec le méme signe; ’invariant de Casson d’une telle sphére d’homologie
est alors, au signe prés, la moitié du cardinal de I’ensemble des classes de repré-
sentations irréductibles de son groupe fondamental.

On retrouve ainsi, pour le cas des fibrés a trois fibres exceptionnelles, le
résultat que R. Fintushel et R. Stern ont démontré a I’aide de I’homologie de

Floer dans [FS]:

«L’invariant de Casson d’un fibré de Seifert ¥, sphere d’homologie entiere,
est égal, au signe pres, a la moitié de la caractéristique d’Euler de
R(T,(D)). »

Pour un fibré de Seifert X, sphére d’homologie entiére, I%(nl(}:)) est une
réunion disjointe de variétés différentiables de dimension paire. P. Kirk et
E. Klassen étudient en détails Iﬁ’(nl(E)) dans [KK] ou ils donnent en particu-
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lier une approche du calcul de la caractéristique d’Euler de I/é(nl()l)). D’autre
part, K. Walker, dans [W], a défini, pour toute sphére d’homologie entiére
(et méme rationnelle!), une structure complexe sur ’espace tangent 7. R pour
laquelle 7 él et 7 éz sont totalement réels, ceci permet de justifier I’interven-
tion de la caractéristique d’Euler de chaque composante connexe de I/é(nl(Z))
dans I’expression de I’invariant de Casson de ¥; il pourrait &tre intéressant de
comprendre pourquoi les caractéristiques d’Euler de toutes les composantes
apparaisent avec le méme signe...

Remarque. Le calcul effectué ci-dessous et la formule de chirurgie de
Casson 1.3.3 suffisent pour calculer I’invariant de Casson de toutes les sphéres
d’homologie entiere fibrées de Seifert (voir [FMS] et [NW]). En fait, la généra-
lisation par K. Walker de I’invariant de Casson et de la formule de chirurgie
1.3.3 ([W]) permettent un calcul beaucoup plus simple de ce nouvel invariant
généralisé pour toutes les sphéres d’homologie rationnelle fibrées de Seifert
(voir [L]).

Je remercie M. Boileau, qui m’a décrit le scindement de Heegaard du para-
graphe 2, L. Guillou, A. Marin, qui m’a suggéré le calcul du paragraphe 3.A,
et P. Vogel.

§1. PRESENTATION DES ESPACES ET ENONCE DU THEOREME

Notations. Dans cet appendice, a;,a, et a; désigneront trois entiers
positifs deux a deux premiers entre eux.

On note X(a;, a,, a;) la sphére de Brieskorn qui admet les deux présenta-
tions de chirurgie équivalentes (voir [Rf] chapitre 9 § G):

0
\ — (O
N ———
31_ a 13. fl_l.. 22..
b, by bs by by

FIGURE 1 FIGURE 2
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ou by, b, et by sont trois entiers qui vérifient
(E): biara; + a1b,as + ajayb; = 1.

Remarque. On vérifie aisément que la variété ainsi présentée est indépen-
dante du choix du triplet d’entiers (b;, by, b3) qui vérifie (E) (on peut, par
exemple, choisir arbitrairement, b, parmi les inverses modulo a; de a,a;, et
b, parmi les inverses modulo a, de a,a;, b; est alors I'unique inverse modulo
a; de a,a; tel que (E) soit vérifiée.)

Les fibrés de Seifert a trois fibres exceptionnelles, sphéres d’homologie
entiére, s’écrivent tous sous la forme =+ X(a;, a,,a;) avec trois entiers
a,, a,, a; premiers entre eux (voir [Sf]). La relation A(— M) = — A(M) nous
permet de ne calculer que I’invariant de Casson de X(a,, a,, a3).

Si on note t(a,, a,, a;) le nombre de points a coordonnées entiéres inté-
rieurs au tétraédre de R3, T(a,, a,, a3), de sommets (0,0, 0), (0, a;, as),
(a1, 0, a3) et (a;, a,,0), on a le résultat:

C.1. THEOREME. L’invariant de Casson de X(a,,a,,a;) est égal a

1
- (g) t(a;, @z, a3).

La fonction (., .,.) est ’opposée de la fonction #( ., ., .) dite de Brieskorn

décrite dans [HZ], on peut ’exprimer a I’aide des formules qui suivent:

3
C.2. t(ay, az, a3) = Z (— D*# {01, x,x3) € 73N 10, a
k=1

X1 X3 X3
x 10, [ X 10, a5[ | (k—1) < — + =+ — < k}
a, a) a;

(F. Hirzebruch et D. Zagier expriment la fonction de Brieskorn ?(a;, a;, as)
sous (’opposée de) cette forme dans [HZ].)

3. (a1, ar, a3) = 4[s(a1az, a3) + s(azay, @) + s(azas, a1)]
a,a,a 301 1
+—1-Y 5] - +1
3 i=14d; 301(1203

ou s désigne la somme de Dedekind:

7] i i 0 si xeZ
s(g,p)= X |- h pour p, g € Z avec ((x)) = 1,
| i=1 \\D p x—EX)— Esmon

ou E(x) est la partie entiere de x.
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§2. SCINDEMENT DE HEEGAARD DE X(a1, 42, as)

2.A. DESCRIPTION GEOMETRIQUE

On considére la présentation de chirurgie de X = X(a1, a2, a;) indiquée
par la figure 2:

7% (- 2)
(C a%y
S |

a
(Kl, b_ll-

)
(Ky, b,

FIGURE 3

Notations. Considérons la figure 3. On note K, K, K3 les composantes
de ’entrelacs de la figure 2.

On décompose le méridien de K; en I II I’ ou I et I' sont des inter-
81 = dl’

valles d’intérieurs disjoints.

a, B,y et 8 sont les arétes du carré hachuré C. (Situé dans le plan de la
figure 3: o et y sont des intervalles sur les méridiens de K, et K, respecti-
vement et B et 6 des intervalles sur le paralléle planaire a K3.)

Pour i = 1, 2, 3, T; désigne le tore plein recollé sur le bord du voisinage
tubulaire de K; lors de la chirurgie prescrite par le diagramme.

Soit W, et W, les deux corps en anses suivants:
w,=(Tu7T,) v IxC, W,=T; v I'xC

Ix (aLly) I'x (B11d)

et F'le bord commun a W, et a W, (voir fig. 4): W, u W, est un scindement
F

de Heegaard de X(a,, a,, a3).

Remarque. Si on utilise la terminologie de Seifert, le méridien de Kj; est
une fibre ordinaire, les tores 7; sont des voisinages tubulaires des fibres
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exceptionnelles et le scindement de Heegaard est réalisé en prenant pour W,
une somme connexe le long des bords des voisinages de deux fibres exception-
nelles et pour W, ’adhérence du complémentaire de W;.

2.B. DESCRIPTION DES GROUPES FONDAMENTAUX ASSOCIES

1, (F) est le groupe libre a quatre générateurs y;, A, W, A, décrits par la
figure 4. Le bord orienté & de Fy s’écrit!) [A;', m] [n, ', A, '] dans cette
base de m;(Fx). On en déduit la présentation de m;(F) par générateurs et
relations: 7, (F) = (i, A, Ha, Ao | 8).

b
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ (K_3’ . Ei)
AN AN
\\\\\\\ ' \\\
W\ BN
W \
o
N
N
N\ \\l‘:
\ \\\\\

AN
ARRRRR R RRR R R R ALY AN

FIGURE 4
F, plongée dans S3 et les générateurs de n (Fy)
Conventions
i(,) désigne la forme d’intersection sur H;(F); un élément de m;(F) et

son image dans H;(F) par I’homomorphisme d’Hurewicz sont notés de la
méme maniére, leur nature est précisée par le contexte.

1) Attention: les lacets sont composés dans Iordre opposé & ’ordre usuel et [a, b]
désigne le commutateur @ !5 ~lab (cf. les conventions avant 3.5).
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Les deux éléments j, et j, de m;(W;) représentés par des lacets de F respec-
tivement homotopes aux ames de 7; et de T, et orientés de sorte que
i@ + bih, i) et i(@ps + ba)y, jo) valent 1, forment une base du groupe
libre 7, (W)).

Soit A3 = 112 €t 13 = A, les deux éléments de 7, (F) représentés respecti-
vement par une longitude et un méridien de K;. L’élément j; de w;(W,) repre-
senté par un lacet de F homotope & I’dme de 73, orienté de sorte que
i(a3hs — byps, j3) vale 1, et I’élément j, de n;(W,) représenté par p; forment
une base du groupe libre nt;(W,).

L’inclusion i, de m;(F) dans =, (W) s’écrit alors:

i, () = Jj; " i, (1) = Jj;
i, (M) = Jj7 i, (\) = Jj3?
tandis que 'inclusion i, de n;(F) dans m;(W;) s’écrit:
b, (1) = Ja b, (W) = j; %
h,(M) =Jj3 h,(A\2) =Jj3 (i, (Wi m2) = j3) .

2.C. DESCRIPTION DES ESPACES DE REPRESENTATIONS ASSOCIES
Ry = R(w;(Fy)) est identifié a (S3)* grace a la base (11, A, 12, A2): & une
représentation p de Ry correspond le quadruplet (p(u;), p(A1), p(12), p(A2)).

De la méme maniére, O, et O, sont identifiés a (S3)2? grace aux bases (J;,/2)

et (J3,J4)-

Ces identifications orientent naturellement Q;, O, et R.

D’apres 3.4 (cf. la preuve de 3.8 i)) et les expressions de i;, et de I,

on a:

-b, q 0 0
0 0 -0, a
0 a by a
1 0 -1 0

1 A A
et donc: A(X(a;, a3, a3)) = 5<Qla Qo).

(Q1, Q2)r, = det

= blaza3 + a1b2a3 + alazb3 = ]

A

Le calcul consiste maintenant a évaluer (él, Ok .
A A
§3. ETUDE DE Q; N Q,

. . A sqe . . .
Cette intersection est R(n;(X)), on utilise, pour simplifier les calculs et les
notations, les conventions suivantes:

a, et @, sont impairs (quitte & permuter a;, a, et @; qui jouent le méme
role).
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On peut alors choisir b; et b, pairs, b; est alors impair.

Le groupe SU(2) est naturellement identifié & la sphére unité du corps H
des quaternions. On écrit les éléments de SU(2) = S sous la forme exp (x) ou
X est un quaternion pur.

A A
3.A. DESCRIPTION ENSEMBLISTE DE Q; N Q,
Cette description montrera en particulier le lemme suivant:

LEMME. Il existe une bijection naturelle de él N @2 dans [’en-
semble E des points entiers, intérieurs au tétraédre T(a,, ay,a;), et dont
les deux premieéres coordonnées sont paires.

A A

Démonstration. Description des éléments de Q; N Q;:

I Le groupe m,;(X) admet la présentation par générateurs et relations
suivante:

T (Z) = (Wi, Mo, A | B central, p' = b=, p2 = b=, (upy)%= h)

h=A=2%);
les représentations irréductibles de 7;(X) doivent associer 1 ou (— 1) a ’élé-

ment central 2 de m;(X), on en déduit aisément que (cf. le lemme B.3.2)
chaque classe de R(m;(X)) contient exactement un représentant p tel que:

ixlTC
p(ny)) = exp | —
a

@r+j)1 - rz)xzn)

a,

X7 Xy T X7 Xy T
et Re(p(nipy)) ( = COS (1—) cos (—2—) — rsin (—1——) sin (—2—))
ajy a, a, a

= COS (M) (et donc p(h) = (— 1)*3)

p(nz) = exp (

as
ou X1, X, €t x; sont des entiers positifs non nuls respectivement strictement
inférieurs a a,, a, et as,
Xx; et x, sont pairs,
et r est un réel strictement compris entre — 1 et 1.

' Ceci définit une bijection ¢ de él N éz dans 1’ensemble des triplets
(%1, X2, X3) de (2Z)? x Z qui vérifient:
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vie{l,2,3},0<x<a,
™) X T X T x| [xm X3
ire}—1,1] tel que:cos{—|Jcos{— | —rsinj—|sin|—— ] =COS}——
a a a a as

vie{l,2,3},0<x;< @

(*) & X1 X X3T X1 X2
cosfl—+—]m)l<cos|{— | <cos{{—— — |7} -
a, a; as ay a

« Xy X2 X3 . Xy X3 Xy X
el ———|<—<mn|{—+—,2-|—+—
a a as a, a a a
Xy X3 X 0
a, as a
X3 X1 X X X2 X3
el —4+—-=>0 et —+—+—-<2
a a a, a a a
X X2 X3 0

(*) & (x1, X, X3) est intérieur & T(ay, az,a3). O

i 1
LEMME. Le cardinal de E est égal a Zr(al,az,a3).

Démonstration. Soit s, (resp. s,) la symétrie axiale de T'(a,, a;, a3) qui, a
(x1, X2, X3), associe le point (a; —x;, @, — Xx,. X3) (resp. (@, — X1, X2, a3 — X3));
S15 82 et s,5; transforment respecgivement f’(al ,ay,a3) N ((2Z)2 X Z) en
To(a1 sy, a3) N (RZ+ 1)2 X Z), T(a,a,a3) N (RQZ+1) x 2Z X Z) et
(T(a,, ay, a3) N (RZ) X QZ + 1) X Z); le cardinal de f’(al , @y, 0a3) N Z3 est
donc égal & quatre fois celui de f‘(al sa,a3) N (1?2 x Z). [

Démonstration de C.2. Soit © = (a; — 1) (a, — 1) (a3 — 1) le cardinal de
P =10, a;[ X 10, a,[ X 10,a5[ n Z3.

Soit 1, le cardinal de Tk={(x1,x2,x3)ePI(k—1)<ﬁ+§3+)—ci<k}.
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£

e o o
le o
of o o
o
o o o
je o
e— o ¢

FIGURE 5 FIGURE 6

P@3,4,5) Ty, Tr et Ts

Comme les entiers a;, @, et a; sont premiers entre eux deux a deux, les
hyperplans de définition de T'(a,, a;, a3), Ty, T, et T; ne rencontrent pas P;
on en déduit que P est réunion disjointe de 7,7, et 73 (donc:
T=7T +T,+1T;) e que le cardinal de P\T(a;,a;,a;) est (m—1).
(t = 1(a1,a2,a3))

0y

FIGURE 7

T(3,4,5) et les quatre composantes de P\T7(3,4,5)
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De plus, comme les symétries du parallélépipede P opérent transitivement sur
ses sommets en laissant le réseau Z3 invariant, T; est isomorphe a T; et aux

quatre composantes de P\T(ay, a2, a3), d’ou
1 3
T, = T3 =Z(n—-'c), puis ) (mDfu=mn—41,=7. []
k=1

Démonstration de C.3. Un théoréme de Mordell (Theorem 5 du para-
graphe 3E de [RG]) donne I’expression arithmétique de t,(ay, a2, @3):

T(ay, @, 13) = — [s(@az, a3) + s(aza;, ax) + s(aya;, ay)l

a,a,a 31 1
n 123(2__2)+___

12 i=1 d; 12(11(12(13

i

aa,a; a,a, + asa; + a,a; n a + a; + as _ 1
6 4 4 2

La relation entre t(a;, a2, a3) et t1(a;, a2, a3):
«t(ay, @y, a3) = (@ — 1) (@2— 1) (a3 — 1) — 411(a1, a2, a3)»

permet alors de conclure. [

A A A
3.B. ETUDE DU VOISINAGE DE Q; N J, DANS R

A A A . .,
PROPOSITION. Q; et Q, sont transverses dans R et le signe associé
a tout point de ’intersection est «moins».

Démonstration. Soit p un pomt de Q1 N Qz, supposons connues des
cartes orientées F,, F, et F de Ql, Qz et R au voisinage de p; il suffit de
montrer que le déterminant de la matrice M de ’application linéaire

L: RE®R3I-> RS
(XI,Xz) HDIFI(S)(FOII}IOFl_l).XI + D!FZ(S)(FOII}ZOFZ_I).XZ

est strictement négatif.

On commence donc par définir des cartes Fi, F, et F de sorte que cette
matrice s’écrive le plus simplement possible (on choisit les représentants des
classes de conjugaison comme au début du paragraphe C.3.A.):
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LEMME. «Cartes au voisinage d’un point p de él N éz»
On note:
€ = p(}"l) = p(h)9

01, 0, 03, les trois angles de 10, n[ tels que p(ny), p(u2), p(As) = p(pyH2)
soient respectivement conjugués a exp(i6;), exp(i0,) et exp(i0;)

et €, &, &; les trois signes tels que sin(— b;€,8;), sin(— b,£,0,) et sin(b;€;0;)
soient strictement positifs.
1. Le difféeomorphisme Fi(g;,€,) de él dans €,]0,n[ X &]0, ]

X 1—1, +1[ qui, a la classe de (exp(ip), exp((ir+j|/1 —r?»90)), associe
(p, 0.r), définit une carte orientée de él.

2. Le difféomorphisme F, de Q, dans &]0,n[ x 1—1, +1[ x 10, [

qui, & la classe de (exp((ir +exp(ip)j)/1 —r2)0),exp(ip)), associe
(p, r,0), définit une carte orientée de Q,.

3. L’application F de R dans (J0,n[ x 1—1, +1)2x1—1, +1[2 qui,

a la classe de l’élément

(exp(i9), e(g: +igi + jg; + kgr), exp((ir + j)/1 —r?)8), e(hy + ih; + jh; + khy))

associe l’élément (o, g;, 0, r, h;, hy) définit une carte orientée au voisinage
A
de p dans R.
Démonstration.

1. Supposons d’abord g, et &, égaux a 1.
o A
Comme Q, est connexe, pour montrer que F;(1, 1) est une carte de Q, orienté

comme base du SO(3)-fibré (QI*QI), il suffit de calculer le jacobien

T T
(positif!) de P’application tangente en (5 , 5 , 0, 1) du difféomorphisme

G,:10,n[2 x ]1—-1, + 1[ X SO(3) — O,
(0,0,7,7) = (exp(iQ).v,exp((ir +j)/1 — r?6).7y).

Pour conclure la démonstration de 1. dans les cas ou (g;, &,) est différent de
(1, 1), il suffit de remarquer que si k(g;, €;) est le difféomorphisme orienté

k(e1, &): €10, m[ X &]0, n[ x ]1-1, +1[ — 10,n[>x]-1, + 1]
((p’ 9’ r) = (81([),829, 8182") ’

le composé k(g;, &) © Fi(g;, &) est égal a Fi(1,1).
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2. Se déduit de 1, si on remarque que
(exp (i), exp ((ir + exp(i9)j})/1 — r?)0))

est conjugué a (exp (i), exp((ir + j)/1 —r?)9)).
3. a) Soit U=10,n[ x $3x]0, [ x]-1,1[X 84,
soit G le difféomorphisme

G: U x SO@3) — G(U x SO(3)) C R
(0, g 6, r, h),Y) — (exp(i9).v,eg.v, exp((ir + j)/1 —r?)0).v,eh.7) ,

et soit G, la restriction de G a U x {1},

p désigne la projection de Ry sur ﬁ*, et p, désigne sa restriction de
G(U x {1}) dans po G(U x {1}); d’aprés 1, p, o G, est un difféomorphisme
qui renverse ’orientation.

b) De plus, le calcul de application tangente en p, '(p) de d montre que
P’application (qui définit implicitement )

@XYoG:(Ux{1})~>8*x (J0,n[ x -1, + 12 x |- 1, + 1[?
u=(p,g=(g +igi+jg +kegc),0,r h=(h+ih+jh+ khy))
H(aGr(U) = [g—l’exp(l(p)] [exp(— (lr +.]l/ ]~ rz)e)’h _119 ((p,ghe’r’hj’hk))
est un difféomorphisme qui renverse [’orientation au voisinage de

G, 'p; ' ©).

On en déduit que F = yop,~ ! définit une carte orientée de R au voisinage
de la classe de p de la maniére suivante:

Si I’on écrit ’inverse de G de G(U x SO(3)) dans U x SO(3) sous la forme
(G 'op 'op) x ¥ (ou ¥ est le composé de G-! et de la projection sur
SO(3)) I’application ¥ = [(0 X w)op 'op] X v est, d’aprés a) et b), un
difféomorphisme orienté d’un voisinage de la classe de p dans R, dans un
ouvert de S3 X R® x SO(3).

Le composé (x=0X (yop, 'op)xy) de x et du difféomorphisme
orienté de S* X R® x SOQ3), qui a (g,x,y) associe (g.v,x,7v), est alors un

difféomorphisme orienté d’un voisinage de la classe de p dans R, dans un
ouvert de S3 X R® x SO(3) tel que:

ox "ex,v) =g e x(x '"gxM.¥)=(xyy).

Ceci, d’apres les conventions d’orientation de 3.11, permet de conclure la
démonstration du lemme. [
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Avec ces cartes, la matrice M s’écrit:

7 0 0 ¢ O ?
tz, 0 0 0 0 ?
27?7 0 7 t ?
7?7 ¢t 727 7 ?
7 t 0 72 0 ?
0O 0 0 0 0 ¢
avec = assin(@))/1—-r* ty=a; t5=a)/1-r?
6= 1 fo=1 fo= — sin () sin (g3 b3 0;)

VI=x

(x = cos(9) cos(e35305) + rsin(@)sin(e;5:63)) ,

son déterminant qu’on peut calculer en factorisant successivement les ¢; dans
I’ordre indiqué par leurs indices est égal a

B a;a,a;sin?(@) (1 — r?)sin(e;b50;)

/1 — x2

il est donc bien strictement négatif. [
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