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Appendice C

par Christine Lescop

Un calcul élémentaire de l'invariant de Casson
DES SPHÈRES D'HOMOLOGIE ENTIÈRE FIBRÉES DE SEIFERT

À TROIS FIBRES EXCEPTIONNELLES

§0. Introduction

Le but de cet appendice est de présenter un calcul direct (à partir de la
construction de la partie 3.B) de l'invariant de Casson des fibrés de Seifert à

3 fibres exceptionnelles, sphères d'homologie entière.

L'ensemble des classes de représentations irréductibles du groupe
fondamental de ces fibrés a un cardinal fini calculé, géométriquement au
paragraphe C.3.A, et différemment par S. Boyer et D. Lines dans l'appendice B

de [BL].
Avec les notations de 3.B (en supposant arrêtés les différents choix), l'étude

A A A
du voisinage de Q\ n Q2 dans R, faite au paragraphe C.3.B, montre que,

A A A

dans ce cas, les espaces Q\ et Q2 se coupent transversalement dans R et

toujours avec le même signe; l'invariant de Casson d'une telle sphère d'homologie
est alors, au signe près, la moitié du cardinal de l'ensemble des classes de

représentations irréductibles de son groupe fondamental.

On retrouve ainsi, pour le cas des fibrés à trois fibres exceptionnelles, le

résultat que R. Fintushel et R. Stern ont démontré à l'aide de l'homologie de

Floer dans [FS] :

«L 'invariant de Casson d'un fibré de Seifert E, sphère d'homologie entière,

est égal, au signe près, à la moitié de la caractéristique d'Euler de

R{K i (£))•»

Pour un fibré de Seifert E, sphère d'homologie entière, R(nx (E)) est une

réunion disjointe de variétés différentiables de dimension paire. P. Kirk et

E. Klassen étudient en détails R{%iÇL)) dans [KK] où ils donnent en particu-
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lier une approche du calcul de la caractéristique d'Euler de R(n\(Z)). D'autre

part, K. Walker, dans [W], a défini, pour toute sphère d'homologie entière
A

(et même rationnelle!), une structure complexe sur l'espace tangent TR pour
A A

laquelle TQX et TQ2 sont totalement réels, ceci permet de justifier l'intervention

de la caractéristique d'Euler de chaque composante connexe de R(7ïi(Z))
dans l'expression de l'invariant de Casson de E; il pourrait être intéressant de

comprendre pourquoi les caractéristiques d'Euler de toutes les composantes

apparaisent avec le même signe...

Remarque. Le calcul effectué ci-dessous et la formule de chirurgie de

Casson 1.3.3 suffisent pour calculer l'invariant de Casson de toutes les sphères

d'homologie entière fibrées de Seifert (voir [FMS] et [NW]). En fait, la
généralisation par K. Walker de l'invariant de Casson et de la formule de chirurgie
1.3.3 ([W]) permettent un calcul beaucoup plus simple de ce nouvel invariant
généralisé pour toutes les sphères d'homologie rationnelle fibrées de Seifert

(voir [L]).
Je remercie M. Boileau, qui m'a décrit le scindement de Heegaard du

paragraphe 2, L. Guillou, A. Marin, qui m'a suggéré le calcul du paragraphe 3.A,
et P. Vogel.

§ 1. Présentation des espaces et énoncé du théorème

Notations. Dans cet appendice, a\, a2 et <z3 désigneront trois entiers

positifs deux à deux premiers entre eux.
On note L(fli, a2i a3) la sphère de Brieskorn qui admet les deux présentations

de chirurgie équivalentes (voir [Rf] chapitre 9 §G):

0

Figure 1 Figure 2
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où bi, b2 et b3 sont trois entiers qui vérifient

(£") bXa2a3 T Û\b2Û3 H~ CI \Cl2b3
1

Remarque. On vérifie aisément que la variété ainsi présentée est indépendante

du choix du triplet d'entiers (bi,b2,b3) qui vérifie (E) (on peut, par
exemple, choisir arbitrairement, bi parmi les inverses modulo ax de a2a3, et

b2 parmi les inverses modulo a2 de axa3, b3 est alors l'unique inverse modulo
a3 de U\ a2 tel que (E) soit vérifiée.)

Les fibrés de Seifert à trois fibres exceptionnelles, sphères d'homologie
entière, s'écrivent tous sous la forme ± L(ax, a2i a3) avec trois entiers

ab a2, a3 premiers entre eux (voir [Sf]). La relation X(- M) - X(M) nous

permet de ne calculer que l'invariant de Casson de L(ax, a2, a3).

Si on note x(ax, a2, a3) le nombre de points à coordonnées entières
intérieurs au tétraèdre de R3, T(ax, a2, a3), de sommets (0,0,0), (0, a2,a3),

(a{, 0, a3) et (ax, a2, 0), on a le résultat:

C.l. Théorème. L'invariant de Casson de L(ax, a2, a3) est égal à

- T(al,a2,a3).

La fonction t est l'opposée de la fonction t(.,.,. dite de Brieskorn
décrite dans [HZ], on peut l'exprimer à l'aide des formules qui suivent:

3

C.2. j(ai,a2,a3) £ (- 1)* #-{(xi,x2,x3) e Z3 n ]0,
k 1

x ]0, a2[x]0, fl3[ I (k-1) < - + - + - < k
a\ a2 a3

(F. Hirzebruch et D. Zagier expriment la fonction de Brieskorn t(aua2,a3)
sous (l'opposée de) cette forme dans [HZ].)

C.3. x(au a2, a3) A[s(axa2, a3) + s(a3ax, a2) + s(a2a3i ax)]

+ îi(i- £ I) —!—+1
3 \ /=! Oil laxa2a3

où 5 désigne la somme de Dedekind:

s(q,p) I jj pour P><? eZ avec (M)

où E(x) est la partie entière de x.

0 si x g Z
1

x - E(x) —sinon
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§2. SCINDEMENT DE HEEGAARD DE X(öi, C2, ^3)

2.A. Description géométrique

On considère la présentation de chirurgie de X £ (01,02.^3) indiquée

Figure 3

Notations. Considérons la figure 3. On note Kx 9K2,K3 les composantes
de l'entrelacs de la figure 2.

On décompose le méridien de K3 en / II 7' où 7 et /' sont des inter-
9/ ar

valles d'intérieurs disjoints.

a, ß, y et 8 sont les arêtes du carré hachuré C. (Situé dans le plan de la

figure 3: a et y sont des intervalles sur les méridiens de Kx et K2 respectivement

et ß et 8 des intervalles sur le parallèle planaire à K3.)
Pour z 1, 2, 3, Tj désigne le tore plein recollé sur le bord du voisinage

tubulaire de Kt lors de la chirurgie prescrite par le diagramme.
Soit W\ et W2 les deux corps en anses suivants:

WX (TXUT2) u I x C, W2=T3 u J'xC
/x(aUy) /' x (ß il ô)

et F le bord commun à Wx et à W2 (voir fig. 4): Wx u W2 est un scindement
F

de Heegaard de H,{ax, a2i a3).

Remarque. Si on utilise la terminologie de Seifert, le méridien de K3 est

une fibre ordinaire, les tores 7} sont des voisinages tubulaires des fibres
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exceptionnelles et le scindement de Heegaard est réalisé en prenant pour
une somme connexe le long des bords des voisinages de deux fibres exceptionnelles

et pour W2 l'adhérence du complémentaire de Wx.

2.B. Description des groupes fondamentaux associés

7u(F*) est le groupe libre à quatre générateurs pi, X1, p2, h décrits par la

figure 4. Le bord orienté ô de F* s'écrit1) [p^1,^1] ^ans cette
base de 7ti(F*). On en déduit la présentation de 7Ci(F) par générateurs et

relations: nx(F) < pi, p2, X21 ô >.

Conventions

/( désigne la forme d'intersection sur H\(F)\ un élément de n\(F) et

son image dans H\(F) par l'homomorphisme d'Hurewicz sont notés de la
même manière, leur nature est précisée par le contexte.

^Attention: les lacets sont composés dans l'ordre opposé à l'ordre usuel et [a, b]
désigne le commutateur a~lb~lab (cf. les conventions avant 3.5).
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Les deux éléments j\ et j2 àe%\(Wx) représentés par des lacets de F
respectivement homotopes aux âmes de T\ et de T2 et orientés de sorte que

/(aim + bikiJi) et i(a2\i2 + b2h Ji) valent 1, forment une base du groupe

libre
Soit X3 P1P2 et p3 X2 les deux éléments de ni(F) représentés respectivement

par une longitude et un méridien de K3. L'élément y3 de 711(^2) représenté

par un lacet de F homotope à l'âme de T3i orienté de sorte que

Hfl3^3 - bsiisJs) vale 1, et l'élément j4 de représenté par pi forment

une base du groupe libre ni(W2).
L'inclusion de n\(F) dans ni(Wi) s'écrit alors:

'u(Hi) =jïb' iijßi) jibl
h^i)=jV 2)= y?

tandis que l'inclusion i2# de ni(F) dans n\(W2) s'écrit:

=i4 ^(M-2) =j4lJb33

L*(^i) y'33 *2*(^2) ja3 M<2) js3) -

2.C. Description des espaces de représentations associés

jR* jR(7Ti(T^hc)) est identifié à (S3)4 grâce à la base (|-ii, ja2, A,2): à une

représentation p de R* correspond le quadruplet (p(pi), p(À,i), p(ti2)> p(^2))-

De la même manière, Q\ et Q2 sont identifiés à (S3)2 grâce aux bases (j\fj2)
et U3J4)'
Ces identifications orientent naturellement Qx, Q2 et R*.

D'après 3.4 (cf. la preuve de 3.8 i)) et les expressions de et de i2^,
on a:

b\ ax 0 Ov

0 0 a21 bxa2a3 + aib2a3 + axa2b3 1

0 Ö3 O3 I
1 0-10/

et doncr^E^,^,^)) !<£,, Qi)k-

Le calcul consiste maintenant à évaluer < Qi,

§3. Etude de Q, n Q2

Cette intersection est tf(rc,(E)), on utilise, pour simplifier les calculs et les
notations, les conventions suivantes:

ßi et a2 sont impairs (quitte à permuter ax, a2 et a3 qui jouent le même
rôle).
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On peut alors choisir bx et b2 pairs, b3 est alors impair.
Le groupe SU{2) est naturellement identifié à la sphère unité du corps H

des quaternions. On écrit les éléments de SU(2) S3 sous la forme exp(x) où

x est un quaternion pur.

3.A. Description ensembliste de Qi n Q2

Cette description montrera en particulier le lemme suivant:
A A

Lemme. Il existe une bijection naturelle de Qi n Q2 dans
l'ensemble E des points entiers, intérieurs au tétraèdre T{a\, a2, a3), et dont
les deux premières coordonnées sont paires.

A A

Démonstration. Description des éléments de Qi n Q2:

Le groupe 7ii(E) admet la présentation par générateurs et relations
suivante:

7ii(Z) (ßl9ß2,h\h central, p"1 h ~b i,^2 h~b2,(ß ip2)"3 hh>

(h X1 X2) ;

les représentations irréductibles de 7ii(E) doivent associer 1 ou (- 1) à

l'élément central h de 7ti(Z), on en déduit aisément que (cf. le lemme B.3.2)
chaque classe de i?(7ii(L)) contient exactement un représentant p tel que:

ixiiX\ 71 \

/

p(p2) exp

p(pO exp i

(ir+jy 1 - r2)x2n\
('

a2

et - cos lf\ cos - esin si„

I x3n\
cos I (et donc p (h) (- 1)^)

#3

où Xi, x2 et x3 sont des entiers positifs non nuls respectivement strictement
inférieurs à ai, a2 et a3,

X\ et x2 sont pairs,

et r est un réel strictement compris entre - 1 et 1.
A A

Ceci définit une bijection 0 de Qx n Q2 dans l'ensemble des triplets
(xlfx2,x3) de (2Z)2 X Z qui vérifient:
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3re]-l,l[ tel que : cos cos - «in S.n cos ^

Vi e {1,2,3}, 0 < xt < a,

(*) »
COS

(*)#
Xi _X2

ai a2

X3
< — < mm

a3

(£l + 5,2_ (Ï! + Û{)
\ ai a2 \ai a2J)

x2
+

*3 Xi
> 0

a2 a3 a{

x3
+

Xi x2
> 0

X1
et —

*2
+ —

x3
+ —

a3 ai a2 a 1 a2 a3

Xi
+

x2 x3
> 0

ai a2 a3

(*)*

(*) ^ (*i » x2, x3) est intérieur à T(ax, a2, a3).

Lemme. Le cardinal de E est égal à -x (aua2fa3).
4

Démonstration. Soit sx (resp. 52) la symétrie axiale de T{ax, a2) a3) qui, à

(Xi, x2, x3), associe le point (at -xua2- x2. x3) (resp. (ax - xx ,x2,a3-x3));
o

s"i, s2 et s'iS'i transforment respectivement T(a1, a2, a3) n ((2Z)2 x Z) en

T(ax, a2, a3) n ((2Z + l)2 x Z), T(ax, a2, a3) n ((2Z + 1) x 2Z x Z) et

(T(ai, a2) a3) n ((2Z) x (2Z + 1) x Z); le cardinal de T(ax, a2, a3) n Z3 est

donc égal à quatre fois celui de T(ax, a2, a3) n ((2Z)2 x Z).

Démonstration de C.2. Soit n (ax - 1) (a2 - 1) (a3 - 1) le cardinal de
P ]0, ai[ x ]0, a2[ x ]0,a3[ n Z3.

Soit xk le cardinal de Tk {(xY, jc2, x3) e P \ (k — 1) < — + — + — < k}
ax a2 a3
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Figure 5

P{3,4,5)

Figure 6

Ti, T2 et r3

Comme les entiers ai, a2 et a3 sont premiers entre eux deux à deux, les

hyperplans de définition de T(fli,a2i a3)> Tx, T2 et T3 ne rencontrent pas P;
on en déduit que P est réunion disjointe de Ti, T2 et T3 (donc:
n Ti + x2 + t3) et que le cardinal de P\T(au a2i a3) est (n -t).
(t T (a,, 02,03))

Figure 7

T(3,4,5) et les quatre composantes de P\T(3,4,5)
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De plus, comme les symétries du parallélépipède P opèrent transitivement sur

ses sommets en laissant le réseau Z3 invariant, Tx est isomorphe à T3 et aux

quatre composantes de P\T(au a2f a3), d'où

1
3

Xj t3 -(71 - t), puis £ (- 1 )kTk 7T - 4Ti T

4 k 1

Démonstration de C.3. Un théorème de Mordell (Theorem 5 du

paragraphe 3E de [RG]) donne l'expression arithmétique de xx{ax, a2, a3):

x[(al,a2,a3) ~ [^1*2,03) + s(a3aua2) + s(a2a3,ax)]

+
12 \/=l «?/ 12*1*2*3

axa2a3 axa2 + a3ax + a2a3 ax + a2 + a3 1

_l_ +
6 4 4 2

La relation entre x(ax, a2i a3) et %x(ax, a2i a3):

«T(ax, a2i a3) (ax - 1) (a2 - 1) (a3 - 1) - 4t1(*1, a2, a3)»

permet alors de conclure.

A A A

3.B. Etude du voisinage de Qx n Q2 dans R

Proposition. Qx et Q2 sont transverses dans R et le signe associé

à tout point de l'intersection est «moins».

A A A

Démonstration. Soit p un point de Qi n Q2; supposons connues des
A A A A

cartes orientées F{, F2 et F de Qu Q2 et R au voisinage de p; il suffit de

montrer que le déterminant de la matrice M de l'application linéaire

L : R3 © R3 -+ R6

(x\, x2) DjFl(fo(Foi1oF1 l) .Xi + D\F2(§)(F0h0F2 l)-x2

est strictement négatif.
On commence donc par définir des cartes Fx, F2 et F de sorte que cette

matrice s'écrive le plus simplement possible (on choisit les représentants des

classes de conjugaison comme au début du paragraphe C.3.A.):



286 L. GUILLOU ET A. MARIN

Lemme. «Cartes au voisinage d'un point p de Q\ n Q2»

On note:

S p(A,!) P (h),

0i, 02, 03, les trois angles de ]0, rc[ tels que p(pi), p(P2), p(^) P(PiP-2)

soient respectivement conjugués à exp(/0i), exp(/02) et exp(/03)

et Ci, s2, 83 les trois signes tels que sin(- ^>1810i), sin(- b2z2Ô2) et sin(£3e303)

soient strictement positifs.

A
1. Le difféomorphisme Fx(81, e2) de Qx dans eJO, n[ x 82]0, tc[

x qui, à la classe de (exp(/<p), exp((/r+ j]/1 - r2)0)), associe
A

((p, 0. r), définit une carte orientée de Q\.
_

A

2. Le difféomorphisme F2 de Q2 dans 83]0,7t[ x ] — 1, + 1[ x ]0,7c[

qui, à la classe de (exp(fir 4- exp(i(f)j]/l - r2)0), exp(/(p)), associe
A

((p, r, 0), définit une carte orientée de Q2.

3. L'application F de R dans (]0,7r[ x ] - 1, + 1[)2 x ] - 1, + 1[2 qui,

à la classe de l'élément

(exp(/'(p), s(gi + igi+jgj + kgk),exp((/V + - r2)0), e(ht + ih, +jhj + khk))

associe l'élément ((p, gi9 0, r, hj, hk) définit une carte orientée au voisinage
A A

de p dans R.

Démonstration.

1. Supposons d'abord 81 et e2 égaux à 1.

Comme Qx est connexe, pour montrer que Fi(l, 1) est une carte de Qi orienté
~ A

comme base du SO(3)-fibré {Qx Qi), il suffit de calculer le jacobien

(71
71 \

-, — 0, 1 I du difféomorphisme
2 2/

Gl:]0,n[2x]-l>+l[xSO(3)^Qll
(cp, 0, r,y) ^ (exp(if).y, exp((/> -./'[ 1 - r2)0). y).

Pour conclure la démonstration de 1. dans les cas où (ei, e2) est différent de

(1,1), il suffit de remarquer que si k(81, 82) est le difféomorphisme orienté

k(81,82): 8i]0,n[ x 82]0, n[ x ]- 1, + l[ -> ]0,7i[2 x ]- 1, + 1 [

(cp, 0, r) ^ (8^,820,8182^,

le composé k(zx, e2) °Fx(ei, 82) est égal à F}(1,1).
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2. Se déduit de 1, si l'on remarque que

(exp(/(p), exp((/r + exp(/<p)y'l/l - r2)6))

est conjugué à (exp(/'(p), exp((ir + j\ 1 - r2)0)).

3. a) Soit U ]0, n[xS3 X ]0, n[x]- 1,1[ x S3,

soit Gle difféomorphisme

G: U x SO(3)-+ G(Ux SO(3))C R*

((cp, g, 6, r,h),y)H" (exp(/(p).y,Eg.y, exp + j]/\- r2)0).

et soit Gr la restriction de G à i/x (1),
p désigne la projection de /?# sur R*, et p, désigne sa restriction de

G{Ux {1}) dans p o G(U X {1}); d'après 1, pr o Gr est un difféomorphisme

qui renverse l'orientation.

b) De plus, le calcul de l'application tangente en ~1 (p) de 9 montre que

l'application (qui définit implicitement vp)

(9 xi|()oGr:(t/x{l})-»S3x (]0,7t[ x ]- 1, + 1[)2 x ]- 1, + 1[2

u (<P,g (gi + igi+jgj + kgk), Q,r,h (ht + ih, + jhj +
!-> (9Gr(w) [g "1, exp (/cp)] [exp (-(/>+ j\/ï -r2)9),Ä_1], ((p

est un difféomorphisme qui renverse l'orientation au voisinage de

G;1P;\P).
-1 A

On en déduit que F \\f °pr définit une carte orientée de R au voisinage
de la classe de p de la manière suivante:

Si Ton écrit l'inverse de G de G(U x SO(3)) dans U x SO(3) sous la forme

(g; 1 op;1O^) x y (où y est le composé de G-1 et de la projection sur

SO(3)) l'application % [(ôxii/Jo^'o^] x y est, d'après a) et b), un
difféomorphisme orienté d'un voisinage de la classe de p dans R* dans un
ouvert de S3 x R6 x SO(3).

Le composé (x 9 x (\|/°/?r~1 °/?) x y) de x et du difféomorphisme
orienté de S3 x R6 x SO(3), qui à (g,x,y) associe (g.y,x,y), est alors un
difféomorphisme orienté d'un voisinage de la classe de p dans R* dans un
ouvert de S3 x R6 x SO(3) tel que:

9(x ~ '(g> x, y)) get x([X"'(g. x, y)]. (g, x,

Ceci, d'après les conventions d'orientation de 3.11, permet de conclure la
démonstration du lemme.
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Avec ces cartes, la matrice M s'écrit:

0 0 u 0

h 0 0 0 0 7

7 0 7 h 7

7 h 7 7 7

U 0 7 0 7

0 0 0 0 0 h

avec ti 03sin(<p)J/1 - r2 t3 ax t5 a2]/l - r2

sin((p) sin (e3 Z?303)

(x cos ((p) cos (s3 b3 03 + ^sin((p)sin(83Z?3 03))

son déterminant qu'on peut calculer en factorisant successivement les tt dans
l'ordre indiqué par leurs indices est égal à

_
ffifl2#3sin2((p) (1 - r2)sin(s3ft3Q3)

l/l - x2

il est donc bien strictement négatif.
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