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274 L. GUILLOU ET A. MARIN

III. DEMONSTRATION DU THEOREME B.1

Soit Fj la surface de Seifert dénouée du nceud K et F = F_ u F, le bord
d’un voisinage régulier W, de F, et W, le bretzel complémentaire.

Choisissons une base (e;, e,) de 7, (F,) induisant une base symplectique de
H,(F,) et prenons-la pour base de 7t;(W;). Choisissons aussi une base (f;, f>)
de H\(W,) telle que la matrice des nombres d’enlacement /k(e;, f;) soit la
matrice identité, alors la matrice de I’application induite par 1’inclusion
H\(F.) — H\(W,) est la matrice de Seifert S de F,,. Une base symplectique de
H\(F,) est (e, ,e[ ,e; ,e, ) ou e est la courbe e; poussée dans F. .

CALCUL DE (Q1, Q2)r,

On identifie, grace aux bases précédentes, Ry, O, O,, Ry, R_, R, a des
produits de sphéres S3. D’apreés le corollaire 3.4 le nombre d’intersection

(Q1, Q2)r, est égal a
det (H((Fy) = Hi((W)) @ H{(W,))

ou les fléches en homologie sont induites par les inclusions d’espace.
Les matrices de H,(Fyx) = H{(W;) et H\(Fy) > H;(W,) sont respecti-
0O 1 10

vement
(1 0 0 1

0 1
) et (fS. (1 0) S) ou S est la matrice de Seifert

0 1
de la surface Fj et ‘S sa transposée. Notons 7 la matrice ‘S. ( i 0) . Alors

0110 0 11 O
(Q1, Qo)r, =det|1 0 0 1f=detfl 0 0 1l}=—det(S-'S)=~-1,
T S 0 S-1§

car S — ‘S est la matrice de la forme d’intersection de F, donc de déter-
minant 1. [

A A A A A A N
CALCUL DE < h(0)), 0, >2 — <01, 0, >% = 2<8,0,>4%

Remarquons que 8 C R_ est inclus dans ’ouvert % donc d’aprés la
partie II

2<8,0,>5=26.0.n 2)i = 26(f6). F( Q2 " %))z,
= 26(Z.f(Q: N )i, = — 2deg(n: f(Qrn %)~ R.) .
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Or on a un morphisme de SO(3) fibrés
i+|Qsn2z -

QN U - R,
olln In

A A 7? A
Q2 N u - R+
ou i,:Q,— R, est induit par l’inclusion F, = W, et n est défini par ce
diagramme.
Donc

deg(m) = deg(is)g,n2) = deg(iy) = deg(H,(Fx) = Hi(W>)) = det(S)
ou la troisieme égalité a lieu d’aprés le corollaire 3.4.

Donc < ’Al(él), éz >r— < él, éz >k = — 2det(S).
Comme g = 2 il vient bien:

" - (- 1ys <h@), 0>k = <01. 0>k _ 1 —2det(S)
2 (Q1> O2)r, 2 -1

= det(S). [
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