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272 L. GUILLOU ET A. MARIN

L’¢lément qui conjugue p a une telle représentation de I’image de o est
unique au signe pres et (on peut le calculer explicitement) son image dans SO(3)
dépend différentiablement de p. Donc 7 © 6 est un difféomorphisme. []

B.4. Remarque. 1l est facile de continuer les calculs précédents pour voir que
si ’on oriente I’image de ¢ en transportant ’orientation de D X 10, n[ C R?
par Do alors: d’une part D8y, n/2): To(0,n/2)Im(0) = & = T1S3 renverse
I’orientation et d’autre part si I’orbite par SO(3) de o(0, ©/2) est orientée
comme SO(3) alors T4, n/2)Im(c) @ T0,7/2)0(0, /2).SO(3) a une orien-
tation oppc/)\sée a celle de L@ & et donc Dmgo, n/2): T, n2)Im(0)
= T%0,7/2)R(L;) renverse l’orientation. En définitive, on voit que l’en-
semble X (du lemme B2) a la méme orientation qu’il soit vu comme fibre de
7t ou comme fibre de 3. Nous verrons cependant que nous n’avons pas besoin
de ce calcul, la différence € = + 1 (éventuelle) d’orientation intervenant deux
fois!

II. UN OUVERT DE REPRESENTATIONS IRREDUCTIBLES
DU GROUPE FONDAMENTAL D’UNE SURFACE DE GENRE 2

Soit F = F_ U F, une surface de genre 2, union de deux exemplaires F_
et F, d’une surface a bord F;, de genre 1. Choisissons des bases (e; , e, ) de
n(F_) et (e/,e,) de m(F,) de sorte que 6_ =[e; ,e, ] = [0F_] dans
m(F_) et &, = [0F,] dans m;(F,). Ces bases identifient n;(F_) et w;(F,) a
des groupes libres sur deux générateurs et R_ = R(m;(F_)) comme
R, =R(m(F,))aS8*x S*. Onnoted_:R_— S3etd,: R, — S3les fleches
d’évaluation sur &_ et &, respectivement. On a comme en I des applications
6_:Dx10,n[>R_eto,:D x]0,n[ > R,. On oriente R, grace a la base
e;,e, ,e; el de Fy. Alors R, = R_ X R, et I’espace des représentations
de n;(F) est

R={(p_,p:)eR_XR,|(B_(p-)) 1 =0.(p:+)}.

Désignons par % [’ouvert de R formé des représentations p = (p_, p4)
de R telles que 9. (p,) # 1.

D’aprés le lemme B3 dans la classe de conjugaison de tout élément p de
% il existe un unique ¢élément de la forme (o _(a, ¢), p. ). Ce p, est dans R,
et on définit ainsi un difféomorphisme
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A

f:% >R,

dont l’inverse associe a p, € R. la classe de conjugaison de (6_(0,1),p+)
ol o_(a, ¢) est choisi de sorte que 8_o_(a, ) = 0+p+) "

B.5. LEMME. Le difféomorphisme [ préserve ou renverse l’orientation
selon que le signe & de la remarque B4 vaut +1 ou — 1.

Démonstration de B.5. On a d’abord des difféomorphismes:

R_ X R, < (Dx10,n]) x SO3) x R, = (S3 - {1}) x SO(3) x R,
(6_(0,1).8p:+) < (@, 1),8p:)~ (0-0_(a,0) .88 p+)

D’ou un difféomorphisme @: R_ X 1~€+ — (S3 - {1}) x SO(3) X R, qui
préserve ou renverse 1’orientation selon que € vaut 1 ou — 1. On a aussi un
difféomorphisme

y: S X SOB) X R, = 83 x R, x SO(3), (X,8,p+) ~ (x.0,.p.,p:+.271,8)

qui préserve I’orientation.

Enfin le point (c_(0,7/2),p%) de R_XR, ou 9, D(i = -1
=0_0_(0,n/2) admet un voisinage dans Ry D R_ X 1~2 qui est positi-
vement difféomorphe a A X B X C ou A est un V01smage de 1 dans S3, B un
voisinage de la classe de (c_(0, n/2),p ) dans % et C un voisinage de 1
dans SO(3). Par composition on obtient un plongement ouvert

AXBXC - S3xR, xSOQ)

l |
AXC = S$3xS003)

faisant commuter le diagramme (car si yoo(p_,p:) = (O_p-).0.p.),
p..g~ 1, g) alors

voo((p-,ps).&) =(@-p-).0+p4+),ps.27 1, 8.8")

et tel que 1 X B X 1 s’envoie sur 1 X O X 1 ou O est un voisinage de p° 4

dans R, . Donc f: Y - R. préserve ou renverse ’orientation selon que €
vaut 1 ou — 1.
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