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APPENDICE B

par A. MARIN

L’INVARIANT DE CASSON D’UN NOEUD DE GENRE 1
A SURFACE DE SEIFERT DENOUEE

B.1. THEOREME. Soit K un nceud dans une spheére d’homologie M
ayant une surface de Seifert dénouée') de genre 1, alors ’invariant de Cas-
son \'(K) est égal au déterminant de la matrice de Seifert de cette surface

1
(donc a EA}J(I) puisque le genre est 1).

I. REPRESENTATIONS IRREDUCTIBLES D’UN GROUPE LIBRE
A DEUX GENERATEURS

Soit L, = Z*Z un groupe libre sur deux générateurs e; et e,, on note
& =-e 'e; ' ee, et d: R(L,) — S? I’application qui a p associe p(§). On a ici
S(L,) = 3-1(1) et d’apres la proposition 3.5, 0 est une fibration de I~Q(L2)
au-dessus de S3 — {1}. On note ©: R(L,) — I%(Lz) la projection.

B.2. LEMME. L’ensemble ¥ = {p € 1~3(L2) |8(p) = — 1} fibre de d est
aussi une fibre de m. On [’oriente comme fibre de m c’est-a-dire comme
SO(3).

Démonstration de B.2. On calcule que tout élément de X est conjugué

i 0 0 1
a la représentation p vérifiant p(e;) = (O ) et p(e) = ( | O)
—_— l —

(cf. exemple 4.7). [

Soit D le disque unité ouvert de C et 6: D X 10, n[ — ﬁ(Lz) I’application
donnée par
it

__]/ —_ 2
c(a,t)(el)=(0 * : lal).

/1 —|a|? a

1) C’est-a-dire: le complémentaire d’un bicollier de la surface de Seifert est ’union d’une
boule et d’anses d’indice 1.

0
) 6@, 1) () = (
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Dans certains calculs ci-dessous on considérera o(a, ) (e;) et o(a,?) (e)

T
comme les quaternions e’ et a — ]/1 —| a |2j. Notons que 0o (0, E) = — ],

B.3. LEMME. Les applications 0°0G ez; nooc sont des difféomor-
phismes de D x 10, x[ sur S3\{1} et R(L,) respectivement.

Démonstration de B.3. 1) cas de doo: Comme 80c est propre, il
suffit de vérifier que 8 © o est une submersion. Les étapes du calcul sont les
suivantes:

Posons X(f) = 6(0,?) (e;)) = e’ et Y(a) = o(a,f) (e;) =a — )1 —|a|?).
On identifie R(L,) a S* x S3 [en associant & p le couple (p (e), p(ex))].

Alors la différentielle de 6, Do: R? = & x & est donnée par:

Do (o, %) (0,0, 5) = (C%X(t)X(to)l;i to(s),O) = (s;,0),s € R et
Do (ao, fo) (@, 0) = (0, D[Y (@) Y () ~']a - ap(@)) = (0, n(@)i + 0(w))) ,

ou N(®w) = Re(ogim) et 8: R2 —» R2 est linéaire et inversible.
En effet le calcul donne
V1 —ao[20(@) = (1 —|oo|D)o + 0gRe(tem®) = ® + iooIm(aym)

donc si ® # 0,]iogIm(oew |<|op|?2|o|<|w]| et 8(w) #0 donc 0 est
inversible.

Ensuite la différentielle de 9, Dd: &£ x & — & vérifie d’apreés 3.7
D9y, y)(v, w) = Adyx[(Id — Ady-1) () + (Adx-1 — Id) (W)]

on calcule donc
(Id — Ady-1) (si) =2(1 —|ao|»)si + 2j+ 2% si Y= Y(a,) et
(Adx-1 = Id) (ui + vj) = (— 1 + e?i)yj si X = X(t)
Donc D@0 6) (ay, £) est surjective car |ao| < 1 et e2i*o = 1.

2) Cas de moo: Soit p une représentation irréductible, quitte & conjuguer p
e 0

on peut supposer que p(e;) = ( " ,t) avec t dans ]0, [, puis quitte a
e_l

conjuguer & nouveau p par des éléments commutant avec p(e;) (des matrices

_ b)
_ avec b

. . a
diagonales) on peut aussi supposer que pley) = (
a

strictement positif.
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L’¢lément qui conjugue p a une telle représentation de I’image de o est
unique au signe pres et (on peut le calculer explicitement) son image dans SO(3)
dépend différentiablement de p. Donc 7 © 6 est un difféomorphisme. []

B.4. Remarque. 1l est facile de continuer les calculs précédents pour voir que
si ’on oriente I’image de ¢ en transportant ’orientation de D X 10, n[ C R?
par Do alors: d’une part D8y, n/2): To(0,n/2)Im(0) = & = T1S3 renverse
I’orientation et d’autre part si I’orbite par SO(3) de o(0, ©/2) est orientée
comme SO(3) alors T4, n/2)Im(c) @ T0,7/2)0(0, /2).SO(3) a une orien-
tation oppc/)\sée a celle de L@ & et donc Dmgo, n/2): T, n2)Im(0)
= T%0,7/2)R(L;) renverse l’orientation. En définitive, on voit que l’en-
semble X (du lemme B2) a la méme orientation qu’il soit vu comme fibre de
7t ou comme fibre de 3. Nous verrons cependant que nous n’avons pas besoin
de ce calcul, la différence € = + 1 (éventuelle) d’orientation intervenant deux
fois!

II. UN OUVERT DE REPRESENTATIONS IRREDUCTIBLES
DU GROUPE FONDAMENTAL D’UNE SURFACE DE GENRE 2

Soit F = F_ U F, une surface de genre 2, union de deux exemplaires F_
et F, d’une surface a bord F;, de genre 1. Choisissons des bases (e; , e, ) de
n(F_) et (e/,e,) de m(F,) de sorte que 6_ =[e; ,e, ] = [0F_] dans
m(F_) et &, = [0F,] dans m;(F,). Ces bases identifient n;(F_) et w;(F,) a
des groupes libres sur deux générateurs et R_ = R(m;(F_)) comme
R, =R(m(F,))aS8*x S*. Onnoted_:R_— S3etd,: R, — S3les fleches
d’évaluation sur &_ et &, respectivement. On a comme en I des applications
6_:Dx10,n[>R_eto,:D x]0,n[ > R,. On oriente R, grace a la base
e;,e, ,e; el de Fy. Alors R, = R_ X R, et I’espace des représentations
de n;(F) est

R={(p_,p:)eR_XR,|(B_(p-)) 1 =0.(p:+)}.

Désignons par % [’ouvert de R formé des représentations p = (p_, p4)
de R telles que 9. (p,) # 1.

D’aprés le lemme B3 dans la classe de conjugaison de tout élément p de
% il existe un unique ¢élément de la forme (o _(a, ¢), p. ). Ce p, est dans R,
et on définit ainsi un difféomorphisme
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