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Appendice B

par A. Marin

L'invariant de Casson d'un noeud de genre 1

À SURFACE DE SEIFERT DÉNOUÉE

B.l. Théorème. Soit K un nœud dans une sphère d'homologie M
ayant une surface de Seifert dénouée1) de genre 1, alors l'invariant de Cas-

son X'{K) est égal au déterminant de la matrice de Seifert de cette surface
1

(donc à puisque le genre est \).

I. Représentations irréductibles d'un groupe libre
À DEUX GÉNÉRATEURS

Soit L2 Z*Z un groupe libre sur deux générateurs ex et e2> on note
ô e(le2 1

e{e2 et ô: R(L2) S3 l'application qui à p associe p(ô). On a ici

S(L2) 6-1(l) et d'après la proposition 3.5, 6 est une fibration de R(L2)
~ A

au-dessus de S3 - {1}. On note n:R(L2) -+ R(L2) la projection.

B.2. Lemme. L'ensemble E {pe R{L2) \ 6(p) - 1} fibre de 0 est

aussi une fibre de n. On l'oriente comme fibre de n c'est-à-dire comme
SO(3).

Démonstration de B.2. On calcule que tout élément de Z est conjugué

n o \ /onà la représentation p vérifiant p(ei) I let p(e2) I
^

1

(cf. exemple 4.7).

Soit D le disque unité ouvert de C et o: D x ]0, n[ -> R(L2) l'application
donnée par

I elt 0 \ / a - ]/l — | a |2 \
o<a.<)(«,)-(o e_„) ;««..<)fe)- \vr^ws

C'est-à-dire: le complémentaire d'un bicollier de la surface de Seifert est l'union d'une
boule et d'anses d'indice 1.
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Dans certains calculs ci-dessous on considérera o(a,t) (ei) et o(a,0 (e2)

B.3. Lemme. Les applications do g et no a sont des difféomor-
phismes de D x ]0, n[ sur 53\{1} et R(L2) respectivement.

Démonstration de B.3. 1) cas de do g: Comme do g est propre, il
suffit de vérifier que 6 o g est une submersion. Les étapes du calcul sont les

suivantes :

Posons X(t) a(a,0 (ei) eu et Y(a) o(a, t) (e2) a - ]/l -1 a \2j.
On identifie R{L2) à S3 x S3 [en associant à p le couple (p(ei), pfe))]-
Alors la différentielle de g,Dg: R3 Sf x i? est donnée par:

Do(a0, t0)(co, 0) (0, D[Y(a) Y(a0) ~ ']„ ao(co)) (0, T|(co)/ + 0(co)j)

où ri(co) Re(a0/co) et 0: R2 -+ R2 est linéaire et inversible.

En effet le calcul donne

]/l - | a0120(co) (1 - | a012)co + a0Re(a0co) co + /a0Im(a0ü))

donc si co ^ 0, | /a0Im(a0ö) | ^ | a0121 co | < | co |. et 0(co) 0 donc 0 est

inversible.

Ensuite la différentielle de d,Dd: x iSf vérifie d'après 3.7

Dd(xfY)(P> w) Ady^-[(Id — Ady-i) (v) 4- (Ad^-i — Id) (w)]

on calcule donc

(Id - Ad y -1) (si) 2(1-| cxo |2)s/ + ?y + 1k si Y E(a0) et

(Ad^-i - Id) (ui + vj) (- 1 + e2i'o)uj si X X(t0)

Donc D(8oo) (a0, t0) est surjective car | a0 | < 1 et e2ito ^ 1.

2) Cas de 71 o g : Soit p une représentation irréductible, quitte à conjuguer p
ie'lt 0 \

on peut supposer que p(et) avec t dans ]0, n[, puis quitte à
\ 0 e~lt)

conjuguer à nouveau p par des éléments commutant avec pfo) (des matrices

comme les quaternions elt et a - ]/l - | a 12j_. Notons que 8o I 0, — I - 1.

diagonales) on peut aussi supposer que

strictement positif.

avec b



272 L. GUILLOU ET A. MARIN

L'élément qui conjugue p à une telle représentation de l'image de o est

unique au signe près et (on peut le calculer explicitement) son image dans SO(3)
dépend différentiablement de p. Donc n o o est un difféomorphisme.

B.4. Remarque. Il est facile de continuer les calculs précédents pour voir que
si l'on oriente l'image de o en transportant l'orientation de D x ]0, n[ C R3

par Do alors: d'une part D0c(o>7ï/2): rö(o,K/2)Im(o) - âf T{S3 renverse
l'orientation et d'autre part si l'orbite par SO(3) de o(0, n/2) est orientée

comme SO(3) alors ra(0,K/2)Ini(o) © TO(0>n/2)o(0, n/2). SO(3) a une
orientation opposée à celle de 2® 9/ et donc DnO(0,%/2)'> Ta(0jn/2)lm(o)
~* To(o,7t/2))R(L2) renverse l'orientation. En définitive, on voit que
l'ensemble E (du lemme B2) a la même orientation qu'il soit vu comme fibre de

71 ou comme fibre de 8. Nous verrons cependant que nous n'avons pas besoin
de ce calcul, la différence 8 ± 1 (éventuelle) d'orientation intervenant deux

fois!

II. Un ouvert de représentations irréductibles
DU GROUPE FONDAMENTAL D'UNE SURFACE DE GENRE 2

Soit F F- u F+ une surface de genre 2, union de deux exemplaires F-
et F+ d'une surface à bord F0 de genre 1. Choisissons des bases (<ef e2~) de

7i i (F- et (p1+,p2+) de ni(F+) de sorte que ô_ \e\ ,e^\ [8EL] dans

ni(F-) et ô+ [8F+] dans ni(F+). Ces bases identifient tu(F_) et tüi(F+) à

des groupes libres sur deux générateurs et R(ni(F_)) comme

R+ R(ni(F+)) à S3 X S3. On note ô_ : R- -> 53 et 8+ : i?+ S3 les flèches

d'évaluation sur 8_ et ô+ respectivement. On a comme en I des applications

o_ : D x ]0,7i[ -> i?_ et o+ : D x ]0,7i[ - R+ On oriente R* grâce à la base

eï e^ de F*. Alors R* i?_ xi?+ et l'espace des représentations
de 7Ti(jP) est

R {(p., p+) eR.xR+ | (0_(p_))-1 0+(p+)}

Désignons par ^ l'ouvert de R formé des représentations p (p_, p+)
de R telles que 8+(p+) ^ 1.

D'après le lemme B3 dans la classe de conjugaison de tout élément p de

% il existe un unique élément de la forme (o_(a, t), p+). Ce p+ est dans R +

et on définit ainsi un difféomorphisme
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fA ^R+

dont l'inverse associe à p+ e R+ la classe de conjugaison de (o_(a, t), p+)

où o_(a, t) est choisi de sorte que 0_o_(a, t) (0+p+)-1.

B.5. Lemme. Le difféomorphisme f préserve ou renverse l'orientation
selon que le signe s de la remarque B4 vaut +1 ou — 1.

Démonstration de B.5. On a d'abord des difféomorphismes:

R_ x R+ <- (D x ]0,7t[) x SO(3) x £ + -+ (S3 - {1}) x SO(3) x R +

(o_(a, 0-g,P+) ((a, 0,2,P + ^ (0_o_(a,O.2,& P+)

D'où un difféomorphisme (p:i?_ X R+ -* (S3 - {1}) X SO(3) X î?+ qui
préserve ou renverse l'orientation selon que s vaut 1 ou - 1. On a aussi un
difféomorphisme

\|/: S3 x SO(3) x - S3 x x SO(3), (x,g, p+) (x.0+ p+ p+ .g-1,g)

qui préserve l'orientation.
Enfin le point (o_(0, n/2), p + de R_ x i?+ où 0+p® - 1

— 0_o_(O, 7c/2) admet un voisinage dans R* DR_ X qui est

positivement difféomorphe à A x B x C où yl est un voisinage de 1 dans S3, B un
voisinage de la classe de (o_ (0, tt/2), p + dans % et C un voisinage de 1

dans SO(3). Par composition on obtient un plongement ouvert

A x B x C -> S3 x R+ x SO(3)

i i
A x C -> S3 x SO(3)

faisant commuter le diagramme (car si \j/ o (p(p_ p+) ((0_ p_). (0+p+),
p+ .g~l, g) alors

\|/oq)((p_, p + ).g') ((0_p_).(0+p + p+ .g~\g-g'))
et tel que 1 x B x 1 s'envoie sur 1 x O x 1 où O est un voisinage de p +
dans R+. Donc f\% R+ préserve ou renverse l'orientation selon que s
vaut 1 ou - 1.
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III. Démonstration du théorème B.l

Soit F0 la surface de Seifert dénouée du nœud K et F F_ u F+ le bord
d'un voisinage régulier Wx de F0 et W2 le bretzel complémentaire.

Choisissons une base (ex, e2) de 7ti(F0) induisant une base symplectique de

Hi(F0) et prenons-la pour base de nx(Wi). Choisissons aussi une base (fuf2)
de Hx{W2) telle que la matrice des nombres d'enlacement Ikie^fj) soit la
matrice identité, alors la matrice de l'application induite par l'inclusion
HX(F+) -> Hx(W2) est la matrice de Seifert S de F0. Une base symplectique de

HX(F*) est (e2~, ex ex e£) où ef est la courbe et poussée dans F±

Calcul de (Qx Q2)R^

On identifie, grâce aux bases précédentes, R*, Qx, Q2, R0, R - R+ à des

produits de sphères S3. D'après le corollaire 3.4 le nombre d'intersection

(Qi, Qih* est égal à

det(Hx(F*) - Hi(Wi) © H{(W2))

où les flèches en homologie sont induites par les inclusions d'espace.
Les matrices de - Hx(Wi) et HX(F^) -+ HX{W2) sont respectivement

/0 1 1 0\ / (0 1\ \
et 'S. I S I où S est la matrice de Seifert

\i 0 0 1) \ \i 0} j
Alorsde la surface F0 et fS sa transposée. Notons 7" la matrice (S.

- det (S - (S) - 1

OO "0 1 1 0'

(Qi. Ô2)** det 10 0 1 det 1 0 0 1

T S 0 s-

car S - 'S est la matrice de la forme d'intersection de F0 donc de

déterminant 1.

Calcul de < h(Qx), Q2>r~ <Qi,Qi>r 2< S, Q2>r
A A A

Remarquons que ô C R- est inclus dans l'ouvert °à donc d'après la

partie II

2<Ô,Ô2>k 2(6.(02 n 4))è 2s(/(ô)./(Ô2 n 4 j)R
+

2e(£E./(Ô2 n 4)r
+
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Or on a un morphisme de SO (3) fibrés
i + I 02 n ® -

Q2 n % -> R,

oîi7r I71

ß2 n 4 Ä R+

où i+: Q2^> R+ est induit par l'inclusion F+ -» PPi et 71 est défini par ce

diagramme.
Donc

deg(Ti) deg(/+l020 %) deg(/+) HX(W2)) det(S)

où la troisième égalité a lieu d'après le corollaire 3.4.

Donc <Â(Ôi), Qi>r ~ <Ôi,Ô2>r — 2det(S).
Comme g 2 il vient bien:

XW -(-l)^</z(Öl),Ö2>^ ~ <Öi-Ö2>ü 1 -2det(S)
2 (Qi, Qi)R^ 2 — 1

det(S).
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