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Appendice A

Polynôme d'Alexander et forme quadratique
d'un entrelacs orienté:

Formule de Conway et invariant de Robertello

Soit K un entrelacs orienté dans une sphère d'homologie orientée M et F
une surface de Seifert connexe pour K (cf. [Rf] p. 118-120 ou [G] p. 24-28).

Soit i: F x [- 1,1] -+ M un bicollier orienté autour de F dans M. La forme
de Seifert de la surface F est la forme bilinéaire définie sur T/j (F; Z) qui
associe à deux classes d'homologie représentées par deux courbes x et y tracées

sur la surface Fie nombre d'enlacement de x+ i(x, 1) et de y. Une matrice
de Seifert *) S de F est une matrice de la forme & dans une base de Hi(F; Z).

La forme antisymétrique I ^ - 1 & est2) la forme d'intersection de la
surface F, et si K est un nœud elle est unimodulaire car égale à celle de la
surface F recollée avec un disque le long de K.

La forme symétrique q - à, + 1 à, est la forme quadratique de la
surface F, elle est paire et dans le cas d'un nœud, non dégénérée de
discriminant impair car congrue modulo 2 à 7. L'invariant de Arf de la réduction
q2 modulo 2 de q/2 est l'invariant de Rohlin-Robertello du nœud K
(cf. [Rb]).

Le polynôme d'Alexander normalisé3) de K est AK(t) det(F/2S
- t ~1/2 {S). Dans le cas d'un nœud, le rang de 77i (F; Z) est pair et on obtient
un polynôme4) en t et t-1 qui vérifie A*(l) 1 et AK(t~l) AK(t). On en
déduit que le polynôme d'Alexander ne dépend pas de l'orientation ambiante
(car si l'on renverse celle-ci, la matrice de Seifert se change en sa transposée).

l) Deux surfaces de Seifert d'un même entrelacs sont isotopes après que l'on leur ait
rajouté des anses triviales et donc deux matrices de Seifert sont S équivalentes: congruentes

(cf. [G]).

'S * 0' 'S * 0
'

après un certain nombre de stabilisations S h> *00 ou 5^ * 0 1

0 1 0, 0 0 0

2) ^désigne la transposée de la forme M 'Mpc, y) : â,{y, x).
3) D'après la note 1 ci-dessus AK(t) ne dépend pas du choix de la surface de Seifert S.

4) Plus généralement si le rang de H{(F; Z) est pair (sinon tW2AK(t) est un polvnôme
en t et t"1).
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La variation par changement de croisement du polynôme d'Alexander
normalisé est donnée par la formule de Conway:

A.l. Lemme (Formule de Conway). Soient K-,K0 et K+ trois
entrelacs orientés qui coïncident hors d'une houle B et coupent cette boule

en deux arcs dénoués disposés suivant les schémas de la figure 12

Alors:
AK+(t) ~ AK_(t) (t~1/2~ t1/2)AKo(t)

K K0 K +

-Fo
Figure 12

Modification d'une surface de Seifert lors d'un changement d'un croisement

Démonstration de A.L Soit F0 une surface de Seifert connexe pour K0

qui coupe la boule B en deux disques disjoints bordés chacun par un arc de

dB et une composante de B n K. Définissons F+ et F_ des surfaces de Seifert

pour K+ et K_ qui sont égales à F0 hors de B et dans B sont les bandes que
l'on voit sur la figure 12.

Les paires de surfaces (F+ F0) et (F_ F0) sont abstraitement difféo-
morphes. Soient (a{, an) des courbes de F0 formant une base de //i(F0; Z)
et soit a0 une courbe de F± telle que (a0, au an) donne une base de

Hi(F±; Z). Si S-,S0,S+ sont les matrices de Seifert correspondantes dans

ces bases on a

S+

a

bi

tl/2SH

Cl ...cn\

V0

o...o\

+

*S+ tl/2S_

donc

ftl/2 - t~

0
0... 0\

0

2S0-t- 'S0\
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En développant det(^1/25+ - t~l/2tS+) et det(/1/2S_ - t~U2tS_) suivant

la première colonne on obtient l'identité cherchée. D

A.2. Lemme. Soit K un nœud dans une sphère d'homologie M alors

l'invariant de Rohlin-Robertello de K est la réduction modulo 2 de

Démonstration de A.2. La forme quadratique de la surface F de matrice

Q s + 'S est paire et de discriminant impair, elle est donc semblable sur
les entiers 2-adiques à une somme orthogonale de formes paires de rang 2

(cf. [HNK] p. 4-5):

r 2a i
\

Q tP\ I j I P où la matrice P est de déterminant impair
\11

Il vient donc: À^(- 1) det(/Q) det(P)2 J] det | i
2Z?

g g

det(P)2 fi (1 -4ajbj) 1 + 4 £ ajbj modulo 8

j= 1 j= 1

On a donc la formule de Levine:

1) 1 + 4Arf(#2) modulo 8

Puisque AK(t) est un polynôme en t et t~l, la série de Taylor en 1 de

AK(t) est à coefficients entiers. Elle permet donc de calculer dans les entiers

deux-adiques la valeur du polynôme d'Alexander en tout nombre impair et en

particulier :

1

Ax(— 1) A^(l) + A^(l) X (-2) + -A^(1) x — 2)2

- » t ^A«(l) x (-2)«-3
« 3«!

Par normalisation on a A^(l) 1 et A A donc A^(l) 0
d'où

Ak(~ 1) 1 + 4-A^'(l) modulo 8

Ce qui par comparaison avec la formule de Levine établit A.2:

Arf(<72) -A^'(l) modulo 2.
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