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APPENDICE A

POLYNOME D’ALEXANDER ET FORME QUADRATIQUE
D’UN ENTRELACS ORIENTE:

FORMULE DE CONWAY ET INVARIANT DE ROBERTELLO

Soit K un entrelacs orienté dans une sphére d’homologie orientée M et F
une surface de Seifert connexe pour K (cf. [Rf] p. 118-120 ou [G] p. 24-28).
Soit i: F X [—1,1] = M un bicollier orienté autour de F dans M. La forme
de Seifert de la surface F est la forme bilinéaire 4 définie sur H,(F; Z) qui
associe a deux classes d’homologie représentées par deux courbes x et y tracées
sur la surface F le nombre d’enlacement de x+ = i(x, 1) et de y. Une matrice
de Seifert') S de F est une matrice de la forme s dans une base de H,(F; Z).

La forme antisymétrique I = 4 — ‘4 est?) la forme d’intersection de la
surface F, et si K est un noeud elle est unimodulaire car égale a celle de la
surface F recollée avec un disque le long de K.

La forme symétrique g = 4 + ‘s est la forme quadratique de la
surface F, elle est paire et dans le cas d’un noeud, non dégénérée de discri-
minant impair car congrue modulo 2 a I. L’invariant de Arf de la réduction
g, modulo 2 de q/2 est invariant de Rohlin-Robertello du noeud K
(cf. [Rb]).

Le polynéme d’Alexander normalisé®) de K est Ag(t) = det(#'/2S
— t~1/218). Dans le cas d’un nceud, le rang de H,(F; Z) est pair et on obtient
un polyndme*) en ¢ et £~! qui vérifie Ag(l) = 1 et Ag(t~!) = Ax(¢). On en
déduit que le polyndme d’Alexander ne dépend pas de ’orientation ambiante
(car si ’on renverse celle-ci, la matrice de Seifert se change en sa transposée).

1 . ~ . b
. ) Deux surfaces.de Seifert d’un méme entrelacs sont isotopes aprés que I’on leur ait
rajouté des anses triviales et donc deux matrices de Seifert sont S équivalentes: congruentes

‘ ' S * 0 S * 0
apres un certain nombre de stabilisations S {* 0 0lou S |* 0 1 (cf. [G]).
01 0 0 0 0

2) !5 désigne la transposée de la forme s4: Lalx, y) = 2(y, x).
3) D’aprés la note 1 ci-dessus A k(¢) ne dépend pas du choix de la surface de Seifert S.

4) Plus généralement si le rang de H;(F; Z) est pair (sinon ¢!/ 2Ak(t) est un polyndéme
en tet 1.
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La variation par changement de croisement du polynéme d’Alexander
normalisé est donnée par la formule de Conway:

A.l1. LEMME (Formule de Conway). Soient K_,K, et K, trois
entrelacs orientés qui coincident hors d’une boule B et coupent cette boule
en deux arcs dénoués disposés suivant les schémas de la figure 12
Alors:
Ag, () — Ax_(8) = (712 = t12) Ak, (1)

) 9

FIGURE 12

Modification d’une surface de Seifert lors d’un changement d’un croisement

Démonstration de A.1. Soit Fy une surface de Seifert connexe pour K|
qui coupe la boule B en deux disques disjoints bordés chacun par un arc de
0B et une composante de B n K. Définissons F, et F_ des surfaces de Seifert
pour K, et K_ qui sont égales & F, hors de B et dans B sont les bandes que
I’on voit sur la figure 12.

Les paires de surfaces (F,,Fy) et (F_, F;) sont abstraitement difféo-
morphes. Soient (a,, ..., a,) des courbes de F, formant une base de H;(Fy; Z)
et soit gy une courbe de F. telle que (aq,a, ..., a,) donne une base de
H\(F.;Z). Si S_,S,,S, sont les matrices de Seifert correspondantes dans
ces bases on a

a Ci...Cy 1 0...0
b, 0
= ,S_ =8, + , donc
S+ VO =+ O
b, 0
(V2 — =172 0...0
t1/2S+ _ t—-l/ZtS+ - tl/ZS_ — t—l/ZtS_ — O
0
0

tl/ZS() _ t—l/ZtSO
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En développant det(z1/2S, — t~1/21S,) et det(¢'/2S_ — ¢ ~1/2!S_) suivant
la premiére colonne on obtient I’identité cherchée. ]

A.2. LEMME. Soit K un nceud dans une spheére d’homologie M alors
Iinvariant de Rohlin-Robertello de K est la réduction modulo 2 de

1
3 A ().

Démonstration de A.2. La forme quadratique de la surface F' de matrice
Q = S + 'S est paire et de discriminant impair, elle est donc semblable sur
les entiers 2-adiques a une somme orthogonale de formes paires de rang 2
(cf. [HNK] p. 4-5):

¥
Q — p (Zaj 1

L 2 ) P ou la matrice P est de déterminant impair .
J

%k

g 2a0; 1
I vient done: Ag(— 1) = det(iQ) = det(P)? ] det (i [
j=1 1 2pb;
g g
= det(P)? [[ 1 ~4a;b) =1+ 4 Y a;b, modulo 8
Jj=1 i=1
On a donc la formule de Levine:

Ax(—1) =1 + 4Arf(g,) modulo 8 .

Puisque Ag(?) est un polyndme en ¢ et £~!, la série de Taylor en 1 de
Ak(?) est a coefficients entiers. Elle permet donc de calculer dans les entiers
deux-adiques la valeur du polynéme d’Alexander en tout nombre impair et en
particulier:

Ax(=1) = Ax(1) + Ax(1) X (=2) + -;—Ak'(l) X (=2)?

> 1
-8 Y —AYPQ) x (-2)n-3,
n=3l’l!

Par normalisation on a Ax(1) =1 et Ag(t) = Ag(t~') donc A(1) =0
d’ou

1
Ag(— D=1+ 45A;<’(1) modulo 8 .
Ce qui par comparaison avec la formule de Levine établit A.2:

1
Arf(g,) = EA}g(I) modulo 2. [
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