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4. DEMONSTRATION DES PROPRIETES 1) ET 2) DE L’INVARIANT DE CASSON

4.1. LEMME. (i) Soit K un nceud dans une sphére d’homologie M, alors
il y a un scindement de Heegaard W, u W, de M tel que K soit une
courbe séparante de la surface F. d

(i) On peut méme demander a W; d’étre un bicollier autour d’une
surface de Seifert pour K.

(iii) Si (K, L) est un entrelacs bord dans M, on peut demander que K
et L soient sur la surface F et la séparent en trois parties.

Démonstration de 4.1. Soit S une surface de Seifert pour le noeud K dans
Met S X [—1,1] un bicollier autour de S. Considérons M comme S X [— 1, 1]
u H! v H? U H? ou H! est une union disjointe d’anses d’indice 1 dont, par
isotopie, on peut supposer toutes les spheres d’attachement dans S X 1 et ou
H? et H3 sont des unions disjointes d’anses d’indices 2 et 3 respectivement.
Alors W, =Sx[-1,11UH\, W,=H?>*UH? e F=0W; convient
pour (i).

. Pour (ii) écrivons d+*H'! pour I’adhérence de la partie de dH! qui ne
rencontre pas S X 1. Alors S* =S X 1 Ud*H! est la surface de Seifert
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cherchée, W, étant le précédent W, union une anse d’indice 1 pour chaque
anse de H! (cf. fig. 9).

Quant a (iii), on commence par considérer des surfaces de Seifert disjointes
Yxet X; pour K et L dans M. On joint ensuite Xx a ¥, X 1 C Xy X [—1,1]
par un tube 7= S! x [0, 1] tel que

TNnXy =8S'X0 et TnEx[-L1D=S'x1CX x1.

On obtient ainsi une surface de Seifert S pour K que L sépare en connectant
Yg et 0(X, x[—1,1]) avec le tube T.

On recopie ensuite la démonstration de (i) (et puis de (ii) si ’on veut) en
isotopant les sphéres d’attachement de H; dans (SN Xg) x 1. [

4.2. LEMME. Soit W, u W, une décomposition de Heegaard d’une
F

variété M et K wune courbe simple fermée de la surface F. Soit h le
«twist» de Dehn a droite') de F autour de K. Alors

W1 ) W2= W] I Wz/{an —_—Fah”(X) ~xekF = 6W2}
hn

est une décomposition de Heegaard de la variété (M,K,) obtenue par
chirurgie de Dehn de coefficient 1/n sur le nceud K.

Démonstration de 4.2. Soit 0:R/2Z x [—-1,1] = F un plongement
préservant I’orientation tel que 6(R/2Z X 0) soit la courbe XK. Le «twisty» de
Dehn autour de K est représenté par: hy: F — F ot hg(x) = x si x n’est pas
dans I’image de 6 et Ag(0(x, 0)) = O(u + v + 1,0).

Soient I; et I, deux exemplaires du segment orienté 0(0 x [— 1, 1]) poussés
relativement a leur bord dans W, et W, respectivement. Alors m = Lu -1,
est un méridien pour le nceud K qui, si K est orienté par 0, a nombre d’enla-
cement + 1 avec K (cf. fig. 10).

| : |

Sx[-1,1] __J

FIGURE 9 FiGURE 10

1 - " . .
. ) 11 dévie une transversale au nceud K vers la droite si F est orientée comme bord
€ Wl .
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Il est clair que W, U W, est obtenu a partir de M par une chirurgie
hn

de Dehn sur le nceud K (hors du tore solide formé par un voisinage de I’image
de 0 les deux variétés sont identiques). Le nouveau méridien est
m’ = h"(l}) v — I, qui, dans le bord d’un tube autour de K est homologue
a m + nK. Le coefficient de la chirurgie de Dehn est donc 1/n. [

A. DEMONSTRATION DE LA PROPRIETE 1)

Soit W, u W, une décomposition de Heegaard de M donnée par le
F

lemme 4.1. Le «twist» de Dehn 4 autour de la courbe K séparant F induit des
difféomorphismes hy: Ry > Ry et 2: I% —% 1% qui préservent 1’orientation
d’apreés le corollaire (3.4) puisque K séparant F, 4 induit I’identité dans I’homo-
logie de Fy. Pour la méme raison /% (Q;) est homologue a Q, dans R, et
donc Pl’invariant de Casson de (M, K,) calculé grice au lemme (4.2) vaut:
VM K,) = 1(_ 1)e < 2"(@1), éz >R 1(* ) < i\ln(él)a éz >R

2 (h%(Q1), Ok, 2 (Q1, Qo)r,

Le but de ce paragraphe est alors:

4.3. PROPOSITION. Il y a une classe EAS dans H3g_3(llé) telle que:
Q) h@) = 8.
@) <A"1(0), Qo>k — <h"(Q), Q2> =26, Q)i -
En effet, donné cette proposition, on a imédiatement que

<0, 0, >4
MM, Ky 1) — MM, Ky) = (— 1) —2 2>k

(Q1, O2)r,
est indépendant de n et entier puisque, d’apres 3.8 (1), (Qi, Q2)r, = % 1.
'D’ou la propriété 1.
Ensuite, cette propriété 1 et le lemme 2.1 disent que pour toute spheére
d’homologie M l’invariant de Casson A (M) est entier.

Démonstration de 4.3. Le noeud K sépare la surface F' en deux surfaces
trouées Fi et Fy . Orientons K comme bord de F et choisissons un point base
' de F dans F.

Soient 3’: Ry —> S3 et 0"": RY — S? les fléches d’évaluation sur le bord.

'Pour un choix cohérent des orientations arbitraires de Ry, R% et RY on a
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R={(p',p") € R X R{|@p)@"p") =1}

et
he(p’sp”) = ((p",p".3"p") .

Notons R” =8’ ~!(—=1)et R” = 8" ~1(—1). D’aprés 3.5, R” et R” sont des
sous-variétés de R, et Ry, et R_={peR|p(K)= —1}=R’_ X R” est
une sous-variété compacte de codimension 3 de R qui est invariante sous
I’action de SO(3) par conJugalson Son quotient R est une sous-variété
compacte de codimension 3 de R. On remarque que A, et h sont 1’identité sur
R_ et R_ respectivement.

Soit alors H:[0,1] X (R\R_)— R\R_ T’homotopie donnée par
H((p',p"), 1) = (p’, p” .exp(z)) ou z est le vecteur de & = T1S? qui vérifie
|z|< metexp(r) =@ p) '=0"p".0naH,=id, Hy = hyp\r_ mais H,,
pour 0 <¢<1, ne s’étend pas a R_. D’autre part H, respecte R et
commute a P’action de S3 :si exp(z) = 8”p” alors exp(z).g =0"(p".2)
= exp(Ad,(z)) et

(p".8).exp(tAd,(z) = (p”.8) . (exp(z).8) = (p”.exp(¥2)) . &

Ainsi H, passe au quotient et donne f[: [0,1] x (1%\13_) - I%\I%_.

On va maintenant examiner ce qui se passe au voisinage de I/é_. Tout
d’abord on peut se ramener au cas ou Q est transverse 3 R_ en isotopant Ql
par une isotopie équivariante de R a support compact (obtenue en relevant
une isotopie a support compact de R rendant @1 transverse a Ilé_). Aprés quoi
I’application d’évaluation p = p(K) ~! = 3"p’’ est une submersion de Ql Vers
S3 au voisinage de Ql A R_. On oriente Ql A R_ comme fibre de cette
submersion.

Pour [a,b] un segment de [0,7m] posons Q'?' = {p e Q,|d(1,p(K))
€ [a,b]} pour d la distance usuelle sur la sphére §3. On écrit Q¢ pour Q!*
et on note que Q'™ = Q.

Ces ensembles sont pour a, b assez proches de n, des sous-variétés de Ql
i/r\lvariantes sous I’action de S3 par conjugaison. Leurs quotients sont notés
Qi et, pour a <m, on oriente Qf comme bord de la variété Q>
Pour u proche de ©, posons

B. = A(Q"™) — O™ + H([0,1] x é‘l‘): c’est un cycle de R (cf. fig. 11) .
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Remarquons alors que bien que A puisse ne pas étre 1’identité hors d’un
compact de 1%, IAI([O,I] X @50’“]) N @2 est compact. En effet puisque H
est l’identité sur les représentations réductibles et préserve les irréduc-
tibles, H([0,1] X (Q1\R-)) N O = {po} U H([0, 1] X (Q1\R_)) N O ol p,
désigne la représentation triviale et puisque 7, H; = id pour 0 < 7 < 1, p, est
isolée  (d’aprés le théoréeme des fonctions implicites) dans
H([0,1] x Q') n Q,. Donc H([0,1] X Q!**) n O, est compact. En
conséquence

<h(Q"") — Q1" ~ H([0,1] X Q}), Q> >% = 0, et donc

A A A A A A
<h(Q1)3Q2>1A?_ <Q1’Q2>I/é = <Ban2>;2~

On peut conclure dés maintenant, puisque pour u assez proche de m, [Aiu
est a support dans un voisinage régulier de R qui se rétracte sur R , que [ASM
est homologue a un cycle cAz’ de R_. Puisque h est I’identité sur R_ , l/;(cAz’) —d
et on obtient la proposition 4.3 mais seulement au facteur 2 du second membre
de ii) prés. Pour obtenir ce facteur 2, et avoir une description explicite de 8
utile plus tard, on va préciser des coordonnées autour de R_, paramétrer le
cycle 614 et trouver 8 comme limite de ﬁu quand u tend vers T.

Les submersions 9': R% — S3 et 0”": RY — S3 conduisent a des plonge-
ments équivariants préservant ’orientation ¢": VX R” > Ryet @”: V X R”
— R ou V est un voisinage de — 1 dans S3 et ou S3 agit diagonalement par
conjugaison sur VX R” et V X R”. De plus ¢ =1id sur — 1 X R_, 0"
=id sur — 1 X R"”, et 3’0o’ =p’,0"0@"”" =p” ou p’ et p”” sont les
projections de V' X R” et VX R” sur V.

Notons Q"= Q; N R_.

On en déduit un plongement 6: ¥V X R_ =V X R” X R” = R tel que:

@ 8(-1,p) =p.

(ii) 6(g,p) (K) =g~ ".

(iii) @ est équivariant relativement aux actions par conjugaison de S3 (qui
agit diagonalement sur V' X R_).

(iv) Si g+ — 1,H(8(g,p",p") = 0(g,p",p".exp(fz)) ou exp(z) = g.
(v) 6(V X Q’f) C Ql (quitte & modifier le plongement de Q1 le long de R_
par une isotopie équivariante qui préserve R_ de sorte que les fibres du fibré
normal & R_ définies par 8 coincident avec les fibres du fibré normal a or

dans Ql .)

~
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On peut alors définir ®,: S3 X Q’f — R pour u assez proche de m:

81, p) si |z]|>u, ot exp(z) =¢
— U .
®,(g,p) = Hauazo(@(exp(lzl),p) si m-u<|z|<u
he(0(—exp(2)),p) = hs(0(—g,p)) si 0<|z|<n—u

ou oy:[m — u,u] = [0,1] est la bijection linéaire renversant I’orientation

(t — u)l.
T — 2u

Cette application ®, est équivariante par rapport aux actions par conju-
gaison de S3? (diagonalement sur S3 X Q’f) et induit une application
ﬁ)u: S3 X Q7/83—~ R. Comme I’application antipodale g— — g conserve

[a,(?) =

I’orientation de S3 et I’inverse g — g~! la renverse, I’application Cf)u para-

metre le cycle ﬁu.
H(QY A0, 1))

s

T\

A Ry [ =]
Le cycleB, (61 \)/L
1
est en traits gras AN
| 1
Ny

L Q-

f@)

N/

FiGcure 11

Si u tend vers m alors @, tend vers ®,: S3 X Q}‘ — R_ donnée par
7 rrs 7 144 Z

(I)n(gsp > P )= (p s P exp(—an(IZDnI—l))

z
=(p’,p". —exp() = (p’,p".8)

Cette application passe aussi au quotient pour donner une application
A ~ A
®,:83x Qf/S* > R_ qui se factorise & travers le revétement double
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S3 X Q"/ S3 - SOQ) % ’f/ S3 donc <f> représente le double d’un cycle 8 de
R_ et est homologue par construction a Bu pour tout u < . Donc

<h(Ql)a Q2>I/é - <Q1a Q2>IA? = 2 <6, Q2>1Ai’
Puisque 8 est 2 support dans R , IA1(3) = 5 et donc, pour tout n,
<h"HQ1), (@2 >k — <h™(Q1), 02>k = 2<h" (5), 02>k
—2<38, Qz >r. U

4.4. Remarque (C. Lescop). On peut penser a la démonstration précé-
dente d’une maniere un peu différente. On va utiliser le voisinage tubulaire
0:V X R_— R pour modifier H, dans ce voisinage en une homotopie
équivariante qui s’étend par 1’identité sur R_.

Soit € >0 tel que V contienne V, = {ge S3|d(l,g) > n —¢&}. Soit
geVy,g+ —letze L= T;S? tel que g = exp(2).

Sim-—te<|z|<m - tg on pose
K(8(g,p)) =Ht(9 (exp (a'(lzl)lzl) p)) ,

€ . o .
ou o;: [n —le, M — tg] — [rn — te,t] est la bijection linéaire croissante.

Sin—t§<|z|<nonpose

K,(8(g,p)) = 6 ( —1,p',p".exp (B,(Iz l)l—z—zl)) :

8 . . r . r ol
ou PB;: [n - ti’ n] — [0, trt] est la-bijection linéaire décroissante.

Alors Ki(Q1) = Hy(Q1) U ®,0i(S® x Q)
ou i:8%X Q’f—> 33 X Q’l‘, i(g,p)=(g"',p) est un difféomorphisme
renversant 1’orientation.

Donc aprés passage au quotient, les égalités

<K(Q), Q:>r = <01, 0>k
et  <K(Q1), 2>k = <h(Qy) — 28, Qr>k
entrainent

<h(©0), 02>k — <01, 0,54 = 2<8,0,>p. O
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4.5. Remarque. Dans le cas ou W, est un collier autour d’une composante
de F\K (et on peut toujours supposer que c’est le cas d’apres le lemme
4.1 1i)) la classe & admet une présentation plus géométrique. En effet, on peut
alors identifier R% et Ry, O, devient la diagonale de Ry X Ry et Qf est
celle de R~ X R” = R_. Dans ce cas l’application [g,p’,p 1 [p',p".&]
de SO(3) X Q}‘/ SO(3) vers R qui définit § est injective. D’autre part
I’action (pl,pz) (g, h) = (p;-8 p,-h) de SO(3) X SO(3) sur R’ X R” de
quotient R X R” indult une SO(3) fibration p: R - R’ R” Soit alors A
la diagonale de R'_ X R’_’ . Clairement & = D~ 1(A) comme ensemble de points
et méme comme cycle orienté au signe présA. Lorsque p‘l(A) sera utilisé

comme cycle il sera toujours orienté comme 6.

Considérons maintenant K un nceud fibré dans la sphére d’homologie M.
C’est-a-dire qu’il existe une fibration p: M3\K — S! = [0,2n] /(0 ~ 2xn) qui
sur un voisinage tubulaire @:S! X D? > M3 de K(p(S! x 0) = K) vérifie

PO o(x,y) = |y| Alors ¥ = p~1(0) u K est une surface de Seifert pour K
Yy

et M est difféomorphe a X X [0,27n]/(x,0) ~ (f(x), 2%) U ¢(S! X D?) pour
un difféomorphisme f: X — ¥ qui est I’identité prés de 9X.

On définit alors RZ = R(m,(X)), R* = {p € R(m, (X)) | pBY) = p(K)
= — 1} et R® le quotient de R par I’action de conjugaison de S3. On note
f*:R*—> RT et fA . RE - R® les difféomorphismes induits par f et
S»:H{(X;Z) = H|(£;Z) le morphisme induit par f.

4.6. PROPOSITION. Dans la situation ci-dessus, si Lef( f\_) désigne le
nombre de Lefschetz de f_ = fA IRE :RE> R® on a:

A'(K) = Lef(f.)det(Id — f,) .

Notons que M est une sphére d’homologie si et seulement si
det(Id — f,.) = = 1

Démonstration de 4.6. Si

Wi=p(0,rD UK, W, =p~'(In,2x]) UK, F = p-1({0,7}) UK

alors (M, F, W;, W,) est un scindement de Heegaard pour M. On identifie

F=0W,aXu (=) =p-'m)u —p-Y0) (=F" UF’ avec les notations
de la démonstration de 4.3) et alors
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Ry =REXRE:R={(p’,p") € REX R*|p’(K) = p”"(K)},
Qi ={(",p")eR|p =p"}, O, ={(p",p")eR]|p = f*(p")},
R_={(’,p”")e REXRE|p’'(K)=p”(K)= — 1} = REx R*.
On a ausii une SO(3) fibration n: R —+1/éz_>< I%E_ et on note A la
diagonale de R* x R* (cf. Remarque 4.5).
< 1(A), Q2 >k
(@1, Ok,

Vu que Q; est la diagonale de R, = R* X R* et Q, le graphe de
f*:R*— R* on a d’apres la définition géométrique du nombre de Lefschetz
Lef(f*) = (Q1,Q2)r, et d’aprés la définition algébrique du nombre de
Lefschetz et 3.4 on a aussi Lef (f*) = det(Id — f,). On peut si ’on préfere
utiliser 3.1 et 3.8 iii) pour montrer directement (Q;, )z, = det(Id — f,).

Pour calculer!) le numérateur, on commence par remarquer que Q, est
transverse & R_ car Ojg,: Q> = S* est égale a la restriction a Q, de 8" o p;:

R* X R* - R% — §3 qui est une submersion prés de (8'cp;) ~!(—1). Donc

A

0O, est transverse a R et < 7!2‘1(1&), @2 >p = < n*l(ﬁ), éz AR >R
D’autre part Q, n R_, le quotient par ’action de SO(3) de {(p",p"")

D’apres 4.3 et 4.5 il nous suffit de calculer

€ RZ X R%|p’ = f_(p”)} est une section de m au-dessus du graphe de £
(ou f- = fizz) donc:

<n-1(A), O, " R >4 = <A, graphe (f ~)>ks x4z
= Lef(f ~!) = Lef (/)
(On peut voir la premicre égalité en rendant graphe ( f _) transverse a A
par une isotopie de R* X R” que I’on reléve 2 R_ en une isotopie qui rend

A A A

0, N R_ transverse a 7 ~1(A), la deuxiéme est la définition géométrique du
A

nombre de Lefschetz, la troisiéme a lieu car R” est de dimension paire). [

4.7. Exemple. Si K = T est le noeud de trefle, alors (cf. [Rf] chap. 10) T est
un nceud fibré de genre 1 et dans une base convenable la matrice de

0 -1
fa est [

S3 x 83| [x, 1 = — 1}/S0(3) est réduit a un point (la classe de conjugaison
de (i,j), cf. le lemme B.2). Donc Lef(f_-) =1 et A'(T) = A (sphére de
Poincaré) = 1. (Pour la sphére de Poincaré cf. [Rf] chap. 9D).

1 1

] donc det(Id — f,) = 1. D’autre part RE={(x,y) €

1) Le calcul qui suit est au signe prés. La vérification du signe est assez pénible et laissée
au lecteur consciencieux.
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4.8*. LEMME. Soit (K,L) un entrelacs bord dans une sphére d’homo-
logie M, alors A" (K,L) est pair.

Démonstration de 4.8. Soit une décomposition de Heegaard de M comme
dans le lemme 4.1 iii). Soient h x et fz ; les difféomorphismes de 1/2\ induits par
les «twists» de Dehn autour de K et de L, et notons SK et gL les cycles corres-
pondants construits dans la proposition 4.3 avec les choix h = hg, Q1 = Qi
eth=h;"', Q) = Q, respectivement. On a alors (aprés une extension évidente
du lemme 4.2):

2(—1)&(Q1, Qe A" (K, L) = <;ZL(I/:‘K(QI))’ éz >R
- <;\7K(él), é2>1“e - <};L(é1)a é2>1“e + <é1,é2>1§
= <he@, A1 Q) >k~ <00k @) >k - <h(@1), &>k
b <0u0:>k = 26k, A Ok — 26k, Ok = 46k, S
donc A" (K, L) est pair. [

En fait on a la:

4.9. PROPOSITION. Soit (K,L) un entrelacs bord dans une sphére
d’homologie M, alors \A"(K,L) est nul.

Démonstration de 4.9. Par un calcul analogue au précédent, on établit:
2(— 1)&(Q1, Q)r A (K, L) = 2<h1(8x) — 8k, Q2> .

Prenons le représentant de 8,( construit dans la remarque 4.5 et supposons
que la courbe L soit dans la moitié F’’ de F. Le cycle sz(gK) est alors la
préimage par p du graphe de I’effet du «twist» de Dehn A, sur R =R".La
proposition découle ensuite de ce que h ; induit I’identité dans I’homologie de
]/é’_’ car le «twist» de Dehn autour de L induit I’identité sur I’homologie de
F'": c’est le contenu du théoréme suivant di a Newstead:

4.10. THEOREME. Un difféomorphisme h d’une surface F, connexe et
a bord connexe, induisant I’identité dans [’homologie de F, induit I’identité
sur I’homologie rationnelle de R_. Ici R_ est {p € R(ni(Fyx))|p@OFs)

= — 1} et R_ estlequotient de R_ par ’action de conjugaison de S3.

Remarques sur la démonstration de 4.10. Newstead (cf. [N1] Théoréme 2
p. 246) avait calculé de maniére purement topologique la dimension de ’homo-
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logie rationnelle de IAQ_. Puis il a obtenu pour I’anneau de cohomologie
rationnelle de R_ des générateurs explicites évidemment fixés par une action
issue d’un difféomorphisme de Fy induisant I’identité en homologie: d’ou le
théoreme 4.10 (cf. [N2] théoréme 1 p. 338). Pour ce dernier résultat il a eu
besoin de deux résultats non triviaux de géométrie algébrique:

1) R_ est homéomorphe a ’espace S des fibrés stables de rang 2 sur une
courbe de genre g, la classe de Chern de ces fibrés valant 1 et leur déterminant
étant fixé (cf. [NS]).

2) S®@ est une variété algébrique projective (cf. [Mu]), on peut donc lui
appliquer la théorie de Lefschetz.

Une autre route nous est donnée par Atiyah et Bott qui, en utilisant la
théorie de Morse et les équations de Yang-Mills, ont retrouvé le résultat de
Newstead et obtenu la cohomologie entiére des espaces de modules (cf. [AB]
théoréme 9.11). [
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