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isotopie à support compact alors Q\ n Q2 devient un nombre fini de points
A A A

et R' x R" étant de codimension trois dans R on peut pousser, près de

AAA A AAAA A A A A

Qi n 62, ôi hors de R' x R" et ainsi disjoindre Q{ de Q2 par une isotopie à
A
A A A

support compact dans R. Cette isotopie se relève dans C Ren une isotopie

qui est l'identité sur R' x 1 u 1 x R" C R - % donc qui ne modifie pas les

points des groupes i) et ii) mais qui fait disparaître les points du groupe iii).
En définitive il vient pour X(M):

(-i)*"(*'-i)<Ô;, Q2 >R>(qï,Q'2')rv

+

(- l)g/g"(Q[ 02 )r'*(QÏ, QI)R'4

(-,Q'2)x.,<QÏ,Q'2'>fr
(-i)*'«"(e;,en«i(0r,er)*i'

=1 (_ ,k<QI'Q2>*- +
1

2 2 (qï,Q'2')*s

X(M')+ X

4. Démonstration des propriétés 1) et 2) de l'invariant de Casson

4.1. Lemme. (i) Soit K un nœud dans une sphère d'homologie M, alors

il y a un scindement de Heegaard Wx u W2 de M tel que K soit une
p

courbe séparante de la surface F.

(ii) On peut même demander à Wx d'être un bicollier autour d'une

surface de Seifert pour K.

(iii) Si (K, L) est un entrelacs bord dans M, on peut demander que K
et L soient sur la surface F et la séparent en trois parties.

Démonstration de 4.1. Soit S une surface de Seifert pour le nœud K dans

Met S X [- 1,1] un bicollier autour de S. Considérons M comme Sx [-1,1]
u H1 u H2 u H3 où H1 est une union disjointe d'anses d'indice 1 dont, par
isotopie, on peut supposer toutes les sphères d'attachement dans S x 1 et où

H2 et H3 sont des unions disjointes d'anses d'indices 2 et 3 respectivement.

Alors Wl S x [- 1„ 1] u H1, W2 => H2 u H3 et F dWi convient

pour (i).
Pour (ii) écrivons 9 +H1 pour l'adhérence de la partie de 9H1 qui ne

rencontre pas 5x1. Alors S+ S x 1 u d + Hl est la surface de Seifert
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cherchée, W2 étant le précédent W2 union une anse d'indice 1 pour chaque

anse de H1 (cf. fig. 9).

Quant à (iii), on commence par considérer des surfaces de Seifert disjointes
et Yl pour K et L dans M. On joint ensuite à x 1 C x [-1,1]

par un tube T S1 X [0,1] tel que

Tn S1 x 0 et T n ÇLl x [- 1,1]) S1 x 1 C ZL x 1

On obtient ainsi une surface de Seifert S pour K que L sépare en connectant
?,K et 0(IL x [-1,1]) avec le tube T.

On recopie ensuite la démonstration de (i) (et puis de (ii) si l'on veut) en

isotopant les sphères d'attachement de H{ dans (S n hK) x 1.

4.2. Lemme. Soit W\ u W2 une décomposition de Heegaard d'une

variété M et K une courbe simple fermée de la surface F. Soit h le

«twist» de Dehn à droite1) de F autour de K. Alors

W1 u W2 W1 II W2/{dW1 F3h"(x) ~ xeF dW2}

est une décomposition de Heegaard de la variété (M,Kn) obtenue par
chirurgie de Dehn de coefficient 1 /n sur le nœud K.

Démonstration de 4.2. Soit 0: R/2Z x [- 1,1] - F un plongement
préservant l'orientation tel que 0(R/2Z x 0) soit la courbe K. Le «twist» de
Dehn autour de K est représenté par: hQ:F^ F où hB(x) x si x n'est pas
dans l'image de 0 et he(Q(u,u)) 0(w + v + l,u).

Soient f et I2 deux exemplaires du segment orienté 0(0 x [- 1,1]) poussés
relativement à leur bord dans Wx et W2 respectivement. Alors m f u - I2
est un méridien pour le nœud K qui, si K est orienté par 0, a nombre
d'enlacement + 1 avec K (cf. fig. 10).

F

Figure 9 Figure 10

de Wx.
*) Il dévie une transversale au nœud K vers la droite si F est orientée comme bord
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Il est clair que Wl u W2 est obtenu à partir de M par une chirurgie
h"

de Dehn sur le nœud K (hors du tore solide formé par un voisinage de l'image
de 0 les deux variétés sont identiques). Le nouveau méridien est

m' hn(Ii) u - I2 qui, dans le bord d'un tube autour de K est homologue
à m + nK. Le coefficient de la chirurgie de Dehn est donc l/n.

A. Démonstration de la propriété 1)

Soit Wi u W2 une décomposition de Heegaard de M donnée par le
F

lemme 4.1. Le «twist» de Dehn h autour de la courbe K séparant F induit des
A A A

difféomorphismes h*:R*->R* et h:R^R qui préservent l'orientation

d'après le corollaire (3.4) puisque K séparant F, h induit l'identité dans l'homo-

logie de F*. Pour la même raison h%(Qi) est homologue à Qx dans F* et

donc l'invariant de Casson de (M,Kn) calculé grâce au lemme (4.2) vaut:

1 <hn(Qi),Q2>R 1 <hn(Qi),Q2>R
X(M,Kn) -(-I)* ^ — ~(~l)g —-

2 (hl(Qi),Q2K 2 (Ö1.Ö2K

Le but de ce paragraphe est alors:

A A

4.3. Proposition. Il y a une classe ô dans H3g^3(R) telle que:
A A A

(i) h(8) 8.

(ii) < hn+x(Qi)i Q2> r ~ < hn(Qi), Q2 >r 2(ô, Q2)r

En effet, donné cette proposition, on a imédiatement que

ô, Q2 R
X(M, Kn+l) - X{M,Kn) {- 1)« _ ~

(01,02^
est indépendant de n et entier puisque, d'après 3.8 (i), (Qi,Qi)r* ± 1.

D'où la propriété 1.

Ensuite, cette propriété 1 et le lemme 2.1 disent que pour toute sphère

d'homologie M l'invariant de Casson À,(M) est entier.

Démonstration de 4.3. Le nœud K sépare la surface F en deux surfaces

trouées Fi et Fi'. Orientons K comme bord de Fi et choisissons un point base

de F dans Fi.
Soient d': Fi S3 et 8": Fi' - S3 les flèches d'évaluation sur le bord.

Pour un choix cohérent des orientations arbitraires de R*, Fi et Fi' on a
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J? {(p',p")e*i xÄi'|(8'p')(8"p")» 1}

et

Mp'.p") ((p'> p".9"p")

Notons R'_ 1) et R" 0"-'(- 1). D'après 3.5, R'_ et sont des

sous-variétés de Riet R *, et R {p e |p(K) - 1} R' X R " est

une sous-variété compacte de codimension 3 de R qui est invariante sous

Faction de SO(3) par conjugaison. Son quotient i?_ est une sous-variété

compacte de codimension 3 de R. On remarque que h* et h sont l'identité sur
A

i?_ et i?_ respectivement.

Soit alors H:[0,1]x (R\R-)->R\R-l'homotopiedonnée par

H((p', p"), t)(p p".exp(fz)) où z est le vecteur de -2' TtS3 qui vérifie

| z | < ji et exp(z) (0'p') ~1 0"p". On a id, mais Ht,

pour 0 < f < 1, ne s'étend pas à R-. D'autre part H, respecte R et

commute à l'action de S3 : si exp(z) 0"p" alors exp(z).g 0"(p"• g)

exp (Adg(z)) et

(p ". g). exp (tAdg(z)) (p ".g), (exp (tz) (p ". exp g

A A A A A

Ainsi Ht passe au quotient et donne H: [0,1] x (R\R_) -> R\R_
A

On va maintenant examiner ce qui se passe au voisinage de R-. Tout

d'abord on peut se ramener au cas où Qi est transverse à R- en isotopant Qi

par une isotopie équivariante de R à support compact (obtenue en relevant
A A A

une isotopie à support compact de R rendant Q\ transverse à R_). Après quoi

l'application d'évaluation p h-» p(AT)_1 9"p" est une submersion de Qi vers
S3 au voisinage de QxnR_. On oriente Qxr\R_ comme fibre de cette

submersion.

Pour [a,b] un segment de [0,7t] posons Q{?,b] {p e Qx |d(l,p(iO)
g [a,b]} pour d la distance usuelle sur la sphère S3. On écrit Q\ pour Q\a,a]

et on note que Q\0,7:] Qx.

Ces ensembles sont pour a, b assez proches de 71, des sous-variétés de Qx

invariantes sous l'action de S3 par conjugaison. Leurs quotients sont notés
Q\a,b] et, pour a < n, on oriente Q\ comme bord de la variété Q[?,a].

Pour u proche de n, posons

ß« h(Q\u,n]) - Q[^n] + //([0,1] x Qi): c'est un cycle de R (cf. fig. 11)
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Remarquons alors que bien que //puisse ne pas être l'identité hors d'un

compact de R, H([0,1] x Q\0,u]) n Q2 est compact. En effet puisque H
est l'identité sur les représentations réductibles et préserve les irréductibles,

H([0,1] x (Qi\R-)) n ß2 {p0} u H{[0,1] x (QAR-)) n Q2 où p0

désigne la représentation triviale et puisque TPoHt id pour 0 ^ t ^ 1, p0 est

isolée (d'après le théorème des fonctions implicites) dans

//([0,1] x Ql?,u]) n Q2. Donc //([0,1] x ôi°'*]) n Q2 est compact. En

conséquence

< h(Q[?-u]) - Q[?'u] - £([0,1] x Q2>k o, et donc

< h{Q\), Q2> r — < Ql > Qi> R —<ßti>Ö2>R-

A

On peut conclure dès maintenant, puisque pour u assez proche de n, ßw
A A A

est à support dans un voisinage régulier de /?_ qui se rétracte sur que ßu
A A A A A A A

est homologue à un cycle d de /L Puisque h est l'identité sur i?_ h (d) d

et on obtient la proposition 4.3 mais seulement au facteur 2 du second membre
A

de ii) près. Pour obtenir ce facteur 2, et avoir une description explicite de 8

utile plus tard, on va préciser des coordonnées autour de R -, paramétrer le
A A A

cycle ßu et trouver 8 comme limite de ßu quand u tend vers 7i.

Les submersions d':R'*-+S3 et 9":R* S3, conduisent à des plonge-
ments équivariants préservant l'orientation (p': V x R'_ - R* et (p": V x RZ

R'4 où V est un voisinage de - 1 dans S3 et où S3 agit diagonalement par
conjugaison sur V x R'_ et V x R". De plus cp' id sur - 1 x R'_, (p"

id sur - 1 x RZ, et 9'o(p' p',d" o(p" p" où p' et p" sont les

projections de F x i?'_et V x RZ sur V.

Notons Q\ Qi n R.
On en déduit un plongement 0 : V x R _ V x R Z x R R tel que :

(i) 0(-l,p) p.

(ii) Q(g,p)(K) g'K
(iii) 0 est équivariant relativement aux actions par conjugaison de S3 (qui

agit diagonalement sur Vx R-).
(iv) Si g* ~l,//,(e(g,p',p")) e(g>p',p".exp(fz)) où exp(z)

(v) 0(Kx Q\) C Qi (quitte à modifier le plongement de Q\ le long de R-
par une isotopie équivariante qui préserve R- de sorte que les fibres du fibré
normal à R- définies par 0 coïncident avec les fibres du fibré normal à Q\
dans Qi.)
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On peut alors définir S3 x R pour u assez proche de n:

®u(g,P)

0(g -1, p) si I z | > où expCz) g

HriiM) 10 (exp > p) si n-u^\z\<:U

h*(Q(-exp(z)), p) Â#(0(-g, p)) si 0<|z|^ji-w
où au: [n - u, u] - [0,1] est la bijection linéaire renversant l'orientation

1

[a„(0 it-u)].
n - 2u

Cette application est équivariante par rapport aux actions par conjugaison

de S3 (diagonalement sur S3 x Q*) et induit une application
A — A

®u' S3 x Q*/S3 R. Comme l'application antipodale - g conserve

l'orientation de S3 et l'inverse g^g~l la renverse, l'application <DW para-
A

mètre le cycle ßM.
H(0U! X[0, 1])

Le cycle ßu

est en traits gras

Figure 11

Si u tend vers n alors <3>u tend vers S3 x R_ donnée par

<Mg, p',p") |p',p".exp | - a^llz |)kL jj
(p',p". - exp (z)) (p',p".g)

Cette application passe aussi au quotient pour donner une application
A ~ A

S3 x Qï/S3 -> R_ qui se factorise à travers le revêtement double
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S3 x Q\/S3 -> SO(3) x Q*/S3 donc représente le double d'un cycle S de
A A
R_ et est homologue par construction à ßw pour tout u < n. Done

< h(Qi), Q2 >r - < Q\, Qi >R 2 < Ô, Q2 >R

A A A A A

Puisque ô est à support dans h (6) ô et donc, pour tout n,

< hn + l(Q{), (Q2>r - < hn(Qi), QI>R 2< h» (ô),Q2>Â

— 2 < ô, Qi >r n
4.4. Remarque (C. Lescop). On peut penser à la démonstration précédente

d'une manière un peu différente. On va utiliser le voisinage tubulaire
0 : V x R _ - R pour modifier Ht dans ce voisinage en une homotopie
équivariante qui s'étend par l'identité sur R_.

Soit s > 0 tel que V contienne VE {g e S31 d(l,g) ^ n - s}. Soit

geVs,g=£ -1 et ze£f TXS3 tel que g exp(z).

i i
8

Si 7i - ^8 < z < 7i - ^ - on pose
2

K,(Q(g, p)) H,10| exp | a,(| z |)^j p jj

ou at : n - t&,n - t- [n - ts, n] est la bijection linéaire croissante.

Si n - t — ^\z\< n on pose
2

^(0(g,p)) 0 | - l,p',p".exp

où ß,: 7Ü — t — 7t
2

[0, t%] est la bijection linéaire décroissante.

Alors KtiQO Ht(Qi) u O, o /(S3 x Q\)
où /: S3 x Qi -> S3 x Q\, i(g, p) (g-1, p) est un difféomorphisme
renversant l'orientation.

Donc après passage au quotient, les égalités

et

< K\(Q\)> 62 >R — < Qî > 0,2 >R

<Kx{Qi\Qi>R <£(00-28, O2 >R

entrainent

< h(Q\)i Q2>r ~ < Qu Qi>R — 2 < S, Q2>R [H
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4.5. Remarque. Dans le cas où W\ est un collier autour d'une composante

de F\K (et on peut toujours supposer que c'est le cas d'après le lemme

4.1 ii)) la classe 8 admet une présentation plus géométrique. En effet, on peut

alors identifier R* et R*,Q\ devient la diagonale de R* x R* et Q\ est

celle de R'_ x R"_ i?_. Dans ce cas l'application [g, p',p'l M [p',p'-g]
de SO(3) x Q*/SO(.3) vers qui définit 8 est injective. D'autre part
l'action (p[, P2). (g,h) (p^.g, p'2-h) de SO(3) X SO(3) sur R'_ X R" de

quotient R'_ x R" induit une SO(3) fibration p: R_ R'_ X R'\ Soit alors A
A A A A

la diagonale de R'_ x R". Clairement 8 /?_1(À) comme ensemble de points
A

et même comme cycle orienté au signe près. Lorsque /?_1(À) sera utilisé
A

comme cycle il sera toujours orienté comme 8.

Considérons maintenant K un nœud fibré dans la sphère d'homologie M.
C'est-à-dire qu'il existe une fibration p:M3\K -> S1 [0, 2tc]/(0 ~ 2n) qui

sur un voisinage tubulaire (p : S1 X D2 M3 de KfoiS1 x 0) K) vérifie

y
po cp(x,y) — Alors I p~l(0) u K est une surface de Seifert pour K

\y\
et M est difféomorphe àïx [0,27t]/(jc,0) - (/(x), 2n) u q)(£* x D2) pour
un difféomorphisme /: E -* E qui est l'identité près de 8E.

On définit alors Rz R* {p e Ä(711(E)) | p(8E) p(Ä)

- 1} et R* le quotient de R* par l'action de conjugaison de S3. On note

f*:RZ->RZ et fiR^-^R^ les difféomorphismes induits par / et

f#: -+ HiÇZ;Z) le morphisme induit par /.

4.6. Proposition. Dans la situation ci-dessus, si Lef(/_) désigne le

nombre de Lefschetz de /_ : Rz_ -> R* on a:

X'(K) Lef (/_ det (Id — /#)
Notons que M est une sphère d'homologie si et seulement si

det (Id - /#) ± 1.

Démonstration de 4.6. Si

=JP"1([0,7u]) u K,W2= p-1([n,2n])uK,F ~1 ({0,ti}) u K
alors (M, F, Wx, W2) est un scindement de Heegaard pour M. On identifie
F=dW1 à E u E) — p~^(71) u -p-i(0) F" u F' avec les notations
de la démonstration de 4.3) et alors



264 L. GUILLOU ET A. MARIN

R* x R*,R {(p',p") ei?2 X i?E|p'(iO
Q, {(p',p") e RIp' p"}, 02 {(p', p") e Ä I p' /*(p")}

R-{(p',p") eRzx/?2|p'(i0 p"(/Q - 1} R-X- R*-
A A « A A

On a aussi une SO(3) fibration n : R- -* R _x Rz et on note A la
diagonale de R* X RL_ (cf. Remarque 4.5).

< 7i~1 (A), Q2>r
D'après 4.3 et 4.5 il nous suffit de calculer

(Qi » Qi)R*

Vu que Qi est la diagonale de R* Rz x et Q2 le graphe de

/*: Rz -> on a d'après la définition géométrique du nombre de Lefschetz

Lef(/*) (Qi, Q2)r^ et d'après la définition algébrique du nombre de

Lefschetz et 3.4 on a aussi Lef(/*) det(Id -/#). On peut si l'on préfère
utiliser 3.1 et 3.8 iii) pour montrer directement (Qi,Q2)r^ det(Id-/#).

Pour calculer1) le numérateur, on commence par remarquer que Q2 est

transverse à i?_ car 0|Ô2: Q2 - S3 est égale à la restriction à Q2 de

ru x pz _> px _> ^3 qUj est une submersion près de (9'o/q) _1(— 1). Donc
A A A A AAAQ2 est transverse à i?_ et < n ~ HA), Q2>r <n ~ HA), Q2 n R- >r

A A

D'autre part Q2 nRlequotient par l'action de 3) de {(p',p")
e R1! x Rx_ \ p' /_(p")} est une section de n au-dessus du graphe de I1

(où /_ f\Rï) donc:

< 7i -1 (Â), Q2 n R_ >ît_ <Agraphe(/:')>«£ x«£

Lef(/:1) Lef(/_)
A A

(On peut voir la première égalité en rendant graphe (/_) transverse à A
a y a V A

par une isotopie de R_ x R_ que l'on relève à R- en une isotopie qui rend
A A A

Q2 n R_ transverse à la deuxième est la définition géométrique du

nombre de Lefschetz, la troisième a lieu car R* est de dimension paire).

4.7. Exemple. Si K T est le nœud de trèfle, alors (cf. [Rf] chap. 10) T est

un nœud fibré de genre 1 et dans une base convenable la matrice de

TO -il A y f/# est donc det(Id -/#) 1. D'autre part i?_={(x,j>)e

S3 x S31 [x, y] - 1 }/SO(3) est réduit à un point (la classe de conjugaison
de (/,y), cf. le lemme B.2). Donc Lef(/_) 1 et X'{T) X (sphère de

Poincaré) 1. (Pour la sphère de Poincaré cf. [Rf] chap. 9D).

H Le calcul qui suit est au signe près. La vérification du signe est assez pénible et laissée
au lecteur consciencieux.
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4.8*. Lemme. Soit(K,L) un entrelacs bord dans une sphère d'homo-

logie M, alors X"(K,L) est pair.

Démonstration de 4.8. Soit une décomposition de Heegaard de M comme

dans le lemme 4.1 iii). Soient hK et hL les difféomorphismes de R induits par

les «twists» de Dehn autour de K et de L, et notons Sk et 8/ les cycles

correspondants construits dans la proposition 4.3 avec les choix h hK, Q\ Q\

et h hl \ Qx 02 respectivement. On a alors (après une extension évidente

du lemme 4.2):

2(-1)*(Öi,Ö2)*.*-"(*.0 <fc(MÖl)),Ö2 >*

- <hK(Qi),Q2>r-<hL(Qi),Qi + <QuQ2>r
<hK(Qi),h'L\Q2)>R-<Q1,^1(Ô2)>« - <MÔ]),Ô2

+ <Qi,Q2>r 2(8X,h['(Q2))è~2(5k,Q2)r 4(8^,

donc X"(K, L)est pair.

En fait on a la:

4.9. Proposition. Soit (K,L) un entrelacs bord dans une sphère

d'homologie M, alors V(K,L) est nul.

Démonstration de 4.9. Par un calcul analogue au précédent, on établit:

2(-1)'(Qi>Q2)r*V(K,L) 2<hL(SK) - Q2>r •

A

Prenons le représentant de SK construit dans la remarque 4.5 et supposons
A A

que la courbe L soit dans la moitié F" de F. Le cycle hL(SK) est alors la
A A

préimage par p du graphe de l'effet du «twist» de Dehn hL sur R' R". La
A

proposition découle ensuite de ce que hL induit l'identité dans l'homologie de

R" car le «twist» de Dehn autour de L induit l'identité sur l'homologie de

F": c'est le contenu du théorème suivant dû à Newstead:

4.10. Théorème. Un difféomorphisme h d'une surface F* connexe et

à bord connexe, induisant l'identité dans l'homologie de F* induit l'identité
sur l'homologie rationnelle de Ici R_ est {p e F(7Ti(F*)) | p(6F^)

A

- 1} et R- est le quotient de par l'action de conjugaison de S3.

Remarques sur la démonstration de 4.10. Newstead (cf. [NI] Théorème 2

p. 246) avait calculé de manière purement topologique la dimension de l'homo-
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logie rationnelle de R_. Puis il a obtenu pour Panneau de cohomologie
A

rationnelle de R_ des générateurs explicites évidemment fixés par une action
issue d'un difféomorphisme de F* induisant l'identité en homologie: d'où le

théorème 4.10 (cf. [N2] théorème 1 p. 338). Pour ce dernier résultat il a eu

besoin de deux résultats non triviaux de géométrie algébrique:
A

1) R_ est homéomorphe à l'espace S(g) des fibrés stables de rang 2 sur une
courbe de genre g, la classe de Chern de ces fibrés valant 1 et leur déterminant
étant fixé (cf. [NS]).

2) Sig) est une variété algébrique projective (cf. [Mu]), on peut donc lui
appliquer la théorie de Lefschetz.

Une autre route nous est donnée par Atiyah et Bott qui, en utilisant la

théorie de Morse et les équations de Yang-Mills, ont retrouvé le résultat de

Newstead et obtenu la cohomologie entière des espaces de modules (cf. [AB]
théorème 9.11).
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