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ou ’on a noté K” le nceud K C C; représenté sur la figure 5 (la bande
verticale représente n tours complets). Soit C’ un cercle dénoué enlacant la
bande verticale du nceud K” (cf. fig. 6). On a:

p*(C', K" = p(K"™ 1) — n(K™)

Un changement de croisement porté par un nceud parallele & C’ est disjoint
du disque D’ bordant C’ et transforme aussi K” en K**! donc le lemme 2.8
nous donne que p*(C’,K") est indépendant de n. Or K© est le nceud trivial
et K1 est le nceud de tréfle T (cf. fig. 5), ainsi:

u*(C, K"y = p*(C’, K% = u(7)
et w*(C,K)= —nu(T)..
1 o 1 A
Comme EAlT,(l)z 1, les invariants A’ et EA”(I)X'(T) ont méme
~ variation par changement de croisement. Alors les deux invariants A’ et

EA”(I)K'(T) sont égaux car ils coincident sur le noeud trivial. [

3. CONSTRUCTION DE L’INVARIANT DE CASSON

A. REPRESENTATIONS DANS S3 = SU(2)

On identifie le groupe de Lie SU(2) a la sphére S3 des quaternions de
norme un. L’algébre de Lie de ce groupe est notée & et s’identifie aux
quaternions purs.

Pour tout groupe discret I on note R(I') I’espace des représentations de I'
dans le groupe S3. Cet espace R(I') est muni de la topologie compacte

A\
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ouverte, ainsi R est un foncteur contravariant de la catégorie des groupes dans
celle des espaces topologiques. On désigne par S(I') le fermé de R(I') formé
des représentations réductibles, c’est-a-dire ici des représentations d’image
abélienne, et par 1~€(1" ) I’ouvert complémentaire (formé des représentations
irréductibles).

Si L est un groupe libre de rang fini k, étant donné une base (a, ..., @)
de L, I’association a p € R(L) de (p(ay), ..., p(ay)) € (S3)¥ détermine un
homéomorphisme entre R(L) et (S3)*.

Un changement de base se transcrit en une application a composantes
polyndmiales, donc C*, de (S3)*. On peut donc munir R(L) naturellement
d’une structure algébrique lisse qui rend difféomorphisme ’homéomorphisme
précédent.

Soit I' un groupe de présentation finie isomorphe a L/ < N> ou L et N
sont des groupes libres munis de bases de rang & et r respectivement (et < N >
est le sous-groupe normal dans L engendré par N). Le difféomorphisme
précédent entre R(L) et (S3)* identifie R(G) a la préimage de (1, ..., 1) € (S3)”
par une application P a composantes polyndmiales de (S3)* vers (S3)’.
Comme précédemment les changements de bases se traduisent par des appli-
cations polyn6miales et on peut encore munir R(I') d’une structure algébrique
naturelle qui est lisse prés de tout point régulier de P.

Le groupe S? agit & droite par conjugaison sur R(I'): si p € R(I) et
g € 83, on définit p.g par p.g(y) = g " !p(y)g pour tout y € I'. Cette action
est C*=, se factorise a travers SO3) = S3/{ + 1} et est libre sur I~2(I“). Donc
1~2(F) est I’espace total d’un SO(3) fibré principal IAé(I‘) - IIQ\(F).

GROUPES LIBRES

3.1. LEMME. L’espace tangent @ R(L) en la représentation triviale
s’identifie fonctoriellement a H'(L; &) = Hom(L, &).

Démonstration de 3.1. Si t— p, est un chemin C* dans R(L) défini
pour 7 proche de 0 avec p, la représentation triviale (qui vaut 1 € S3 sur tout
¢lément de L), pour chaque y € L on peut écrire p,(y) = exp (fu(y) + 0(t?))
pour un unique u(y) € & et ¢ proche de 0. La condition p:(YY") = p:(Y)p:(y")
entraine u(yy’) = u(y) + u(y’) et donc u € H\(L; &). [

3.2. Définition. Pour tout groupe I" on a une transformation naturelle

v:H'(T'; Z) > H;(R(T); Z)
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qui & a € H'(I'; Z) = Hom(I', Z) associe y(a) = R(0)4([R(Z)]. On a noté
‘R(a): R(Z) » R(I') application induite par ’homomorphisme a et [R(Z)] la
classe fondamentale!) de R(Z).

3.3. LEMME. Si L est un groupe libre de type fini, la transformation
v:HY(L;Z)— H;(R(L); Z) est un isomorphisme.

Démonstration de 3.3. Si on choisit une base a;,...,a, de L et si
Q, ..., @ est la base duale de H'(L; Z) définie par a,(a;) = §;; alors R(a;) est
Tinclusion de S3 = R(Z) comme i® facteur de (S3)* = R(L) et donc
() =[1X%X..x83%..x1]. On conclut grice au théoréme de
Kiinneth. [

3.4. COROLLAIRE. Dans la catégorie des groupes libres de types fini, on a
‘un isomorphisme de foncteurs: ®: H*(R(.);Z)—~ A*H,( . ;Z).

Démonstration de 3.4. Si L est un groupe de cette catégorie par les
théorémes des coefficients universels H3*(R(L); Z) est fonctoriellement iso-
morphe & Hom(H35(R(L); Z), Z) et H,(L; Z) est fonctoriellement isomorphe
‘a Hom(H'(L; Z), Z). Donc la transformation naturelle y de 3.3 induit un
isomorphisme fonctoriel de H3*(R(L);Z) sur H(L;Z). Cet isomorphisme
s’étend en @:H3*(R(L);Z) = A*H?*(R(L);Z) grace a la formule de
Kiinneth. [

GROUPES DE SURFACES

Soit F une surface compacte sans bord orientée de genre g et désignons par
F, la surface F privée d’un disque ouvert. Choisissons un point base dans le
‘bord de F. L’inclusion de Fy dans F' induit une surjection de m;(F%) sur
7, (F) a laquelle correspond une injection R(n;(F)) = R(rn;(Fx)) dont I’image
est 9-1(1) ou O:R(m(Fyx)) — S? est I’évaluation: 9(p) = p(8), § = [0F,]
e 7;(F4). Rappelons que m;(F%) est un groupe libre de rang 2g et que pour
‘un choix convenable de la base a;, by, ..., a,, b, on a 6 = [a;, b1] ... [ag, b,].

Conventions

‘1) les bords sont orientés de sorte que (normale extérieure @ orientation du
‘bord) donne une orientation de la variété a bord.

2) [a,b] = a-'b~lab.

1) Celle qui va sur la classe fondamentale de S 3 par I’homéomorphisme p - p(1) entre
"R(Z) et S3.
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3) On compose les lacets dans le méme sens que les applications: parcourir
le lacet ap c’est d’abord parcourir le lacet B puis le lacet a.

3.5. PROPOSITION. L’ensemble singulier de 0 est l’espace S(mi(Fy))
des représentations réductibles de m,(Fyx) dans S3.

3.6. COROLLAIRE. Si g est supérieur a 1 , R(n,(F)) est une sous-variété
de dimension 6g — 3 de R(m,(Fy)) et R(nl(F)) est une sous—varzez‘e de
dimension 6g — 6 de R(m(F*)) Si g=1,R(m(F)) =

Démonstration de 3.5. On choisit une base ay, by, ..., a,, bg de 7 (Fy)
comme ci-dessus et on identifie R(m;,(Fx)) a (S3)2¢, on pose aussi x; = p(a;)
et yi = p(b;), 1 < i< g. Le fibré tangent a S3 est trivialisé par des champs de
vecteurs invariants a droite et on note exp: & = T,S8%— S3 I’application
exponentielle. Rappelons que la représentation adjointe!) de S3 dans & se
factorise par le revétement double S3— SOQ) = SO(Z) et que deux
éléments de S3 distincts de + 1 commutent si et seulement si leurs images
dans SO(3) ont méme ensemble de points fixes. La proposition 3.5 découle
alors du calcul de Papplication tangente a I’application commutateur:

3.7. LEMME. L’application tangente en (x,y) a [’application commuta-
teur ©:83 x S3— 83 est Papplication de < X & définie par:
(u, v) = Ad,[(Id — Ad,-1) (1) + (Ad,-1 — Id) ()] .

Démonstration de 3.7.

d
TO\x,»(U, 0) = - [x~texp(— fu)y ~'exp(fu)xyy ~'x~'yx] | -0

= —xlux+x" 1y lupx =x"1y "[u—yuy-yx.

Le calcul de T, ,,(0,0) est analogue. [

Suite de la démonstration de 3.5. 1l suit du lemme 3.7 que 7%, est
surjective sauf si Ad,-: et Ad,-: ont un axe en commun c’est-a-dire sauf si x
et y commutent. (On convient que toute droite de R3? est un axe de ’identité
de SOQ3)).

L’application tangente a4 d en (xi, yi, ..., X;, V), T0: L2 > & §écrit

E Ad-1 0TD; ol ¢ =1,¢ = H [xj, ;] pour 1<i<g et &;:(S3)2

i=1

Jj=1
— g3 verlfle D (X1, Y1y oees Xgy Vg) = X1, il

Sive Z et geS3, Adg(v) = g~ 'vg.
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Donc si tous les x; et y; commutent, I’image de 70 est contenue dans le
[plan orthogonal & un axe commun aux Adxi—l et Adyl_—1 et 70 n’est pas
surjective. Inversement si les x; et y; ne commutent pas tous entre eux alors

ou bien il existe un 7 tel que [x;, y;] # 1 et alors déja TD 1, . .y, .., 1 €St
g

surjective ou bien tous les commutateurs [x;, y;] sont triviaux, 70 = E T,,
X i=1

et 1l existe un x; et un x; tels que Ad, Slet Ad, —1 n’aient pas d’axe commun
et donc Im(T%)) + Im(T?;) = & et T0,, yl xg, vy €St surjective. [

ceey

B. DEFINITION DE L’INVARIANT DE CASSON D’UNE SPHERE D’HOMOLOGIE M
Soit (M, F, W, W) = W, g W, un scindement de Heegaard de genre g

d’une variété M de dimension trois orientée: la variété M est séparée par une
surface F de genre g en deux bretzels W, et W,. Désignons par F la surface
F privée d’un disque ouvert. On oriente F et Fy comme bord de W, qui porte
I’orientation induite de celle de M. Choisissons un point base dans le bord
!;de F,.

Les groupes fondamentaux de la surface a bord F, et des bretzels W, W,
sont libres, leurs espaces de représentations dans S3 sont donc des produits de
sphéres de dimension trois.

Notons
Ry = R(m1(Fy)), Q1 = R(mi (W), O, = R(mi(W3)) et R = R(mi(F)) .
Les ~ et les A ont le méme sens qu’au début de A: par exemple

Q1 = R(nl(Wl)) est I’espace des représentations irréductibles de m;(W,) et
0, = l%(nl(Wl)) est le quotient de Q, par I’action de SO(3).
Correspondant au diagramme de Van Kampen ou toutes les fleches sont

‘des surjections:
n (W1)
7 ™

T (Fy) = 1 (F) T (M)

Y /
i (W2)

|
on a un diagramme d’injections d’espaces de représentations

0}
2 L®)

Ry < R Q1 N Q, = R(my (M)

Q2
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Remarquons que Q; est une sous-variété de R, de dimension moiti¢ car on
peut choisir une base ay, b, ..., a;, b, de T;(Fy) telle que ay, ..., a; soit une
base de mw;(W;). Il en est de méme pour Q,.

3.8. LEMME. i) M est une sphére d’homologie entiere si et seulement si
Iintersection homologique (Qi, Q2)r, de Qi et de Q, dans Ry vaut
+ 1.

il) M est une sphére d’homologie rationnelle si et seulement si Q, et
Q, sont transverses dans R, en la représentation triviale po.

iiiy Si M est une sphere d’homologie entiére le signe de !’intersection en

Po est (Qi, Or)r*.

Démonstration de 3.8. Si M est une sphére d’homologie rationnelle on a
un isomorphisme de Mayer-Vietoris H\(W,; &) ® H\(W,; &) - H (F; &)
= H'(Fy; &), qui peut étre interprété comme un isomorphisme

H'(mi(W1); Z) @ H' (mi(W2); &) = H (mi(Fx); &)

et le lemme 3.1 montre que cela équivaut a7, OQ; @ T,,0, = T,,R+, ce qui
établit ii).

Quant a i), identifions R, au groupe (S3)%¢ et soit m: Q; X O, = Ry
P’application (qi, ;) = q1q,. D’apres la fonctorialité de la formule de Kiin-
neth le degré de cette application est le nombre d’intersection (Q;, Q,)z*. (On
peut aussi s’en convaincre en remarquant que le degré de m est égal au signe
prés a celui de I’application m” ou m’(q:, q2) = (q1) ~'q,, il suffit alors
d’isotoper Q; dans R, de sorte que Q; devienne transverse & Q,, la préimage
de 1 par m’ est Q; N Q, et les contributions locales de chaque point de
Q1 N Q, au degré de I'application m’ et a (Q;, Q,)z* sont alors clairement
¢gales).

Maintenant par I’isomorphisme du lemme 3.4 I’application
m*: H%(Ry; Z) = H%(Q1 X Qy; Z) = H#(Q1; Z) ® H3¢(Oy; Z)
correspond a 1’application
A%H,\(Fy; Z) =~ N2(Hy(Wy; Z) @ Hy(Ws; Z))

induite par les inclusions. D’aprés la suite de Mayer-Vietoris, M est une spheére
d’homologie entiere si et seulement si cette derniére application est un isomor-
phisme, donc, si et seulement si le degré de m qui est (Q1, Qo)r, vaut + 1.

Enfin iii) vient de ce que les deux signes cherchés se lisent sur la méme suite
de Mayer-Vietoris comme on vient de voir. [
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3.9. COROLLAIRE. Si M est une sphére d’homologie entiére Ql N Qz
est compact.

Démonstration de 3.9. D’aprés ii) du lemme 3.8 si M est une sphere
d’homologie rationnelle la représentation triviale est isolée dans le compact
Q1N Q,, donc Q; N Q, — {1} est compact. Si de plus M est une sphere
d’homologie entiere, la représentation triviale est la seule représentation
réductible de Q, N O, = R(m;(M)) ainsi Q; N O, = Q1 N Oy — S(7,(M))
= QN Q, — {1} est compact. [

3.10. Remarque. Soit I' un groupe se surjectant sur un produit libre
I+, ou Hi(T) et H;(I';) ont des éléments d’ordre supérieur a deux, alors
I’espace des représentations irréductibles de I" est non compact. En particulier
si M est un fibré de Seifert dont la base est de caractéristique d’Euler inférieure
a — 1 ou si M est une somme connexe de deux variétés dont le H; a des
éléments d’ordre supérieur a deux, Ql N Qz est non compact.

Soient en effet p;: 1"y, = Z/pZ et p,:1', > Z/qZ deux homomorphismes
surjectifs avec p > 2 et g > 2. Soient x et y dans & = T,S% avec | x|
= | y|= 1. Définissons p, ,: ' = S3 comme p, ,on ot w: " = I'; * T, est une

2npy (@) )
X 5

surjection et si @ est dans I'; et b dans Iy, p, (@) = exp(

bx,y(b) = €Xp (@;(ﬁ

est différent de + y. [

y) . Cette représentation n’est irréductible que si x

3.11. Orientations de R*,f?,fz, él,éz

Dans ce qui suit S3, Q,, O, et R, seront orientés de manicre arbitraire
(mais fixée!). Ensuite SO(3) est orienté de sorte que le revétement
S3 - SO(3) soit localement un difféomorphisme préservant I’orientation et
toutes les submersions verront leur espace total orienté par la convention
base @ fibre. Plus précisément, si p: E — B est une telle submersion, si
by € B, sie epl(by) et si o: U X V— E est une carte locale autour de e
(ou V est un voisinage de e, dans p ~!(by) et U un voisinage de b, dans B)
telle que @ |5, x v soit Iinclusion de ¥ dans E et po ¢ la projection U X V
— U alors on demande que ¢ préserve I’orientation.

Ainsi R est orienté comme fibre de la submersion 8: R* —~ S3et R (resp.
él , éz) comme base du SO(3) fibré a droite R—R (resp. Ql - @1 ,
0. 0.

~
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Les ensembles él et @2 sont des sous-variétés fermées de dimension
moitié de la variété non compacte R. Comme d’aprés le corollaire 3.9
él a ég est compact on peut définir un nombre d’intersection homologique
< @1, éz > de él et éz dans R (cf. [D], VIII.13). Ce nombre admet aussi
la définition géométrique suivante que nous utiliserons de préférence: on peut
rendre @1 transverse a éz par une isotopie a support compact, I’intersection
él N éz est alors un nombre fini de points munis chacun d’un signe selon la

A A
régle usuelle. La somme de ces signes définit < Q,;, Q, >} car on montre
par des arguments classiques que cette somme ne dépend pas de l’isotopie

choisie.

3.12. Remarque (C. Lescop). On peut montrer le iii) du lemme 3.8 sans
utiliser ’isomorphisme de foncteurs du corollaire 3.4 de la fagcon suivante.

A
Etendons I’isotopie précédente en une isotopie a support compact de Ry.

Puisque él et éz sont inclus dans R qui est de codimension trois dans Ilé*,
on peut pres de ’ensemble fini @1 N Qz, isotoper él hors de I% dans ]3*
On releve ensuite la composition de ces deux isotopies a R pour obtenir (en
prolongeant par I’identité sur S(m;(Fx))) une isotopie de Ry, h,,0 <t < 1,
telle que Ay = id et A;(Q;) N O, = {po}. Donc (Q;, O>)r, est €gal au signe de
I'intersection en p, laquelle est transverse d’aprés 3.8 ii). (On trouvera un
argument semblable dans la démonstration de 3.17). Si ’on veut, on pourra
se passer dans la suite de I’article du corollaire 3.4 en utilisant a sa place le
lemme 3.1 et la présente remarque.

3.13.  Définition. Soit (M, F, W;, W,) un scindement de Heegaard de

genre g d’une sphére d’homologie M. L’invariant de Casson de
(M, F, W,, W,) est:

M, F, W,, W) = —(— e <91 0>k
O, O,

3.14. Remarques. a) Si g=1 on a <, D >4 = 0. D’ailleurs la seule
spheére d’homologie de genre < 1 est S3.

b) 81 I’on change I’orientation de Q; (ou de Q,) Porientation de Ql

(resp. Qz) change simultanément et A(M, F, W, W,) est inchangé. Il découle

aussi de 3.11 que A(M, F, Wy, W;) ne dépend pas non plus de ’orientation de
S3 ni de celle de R,.
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c) Le signe (— 1)¢ sera expliqué dans la proposition 3.16, il est nécessaire
pour que I'invariant de Casson ne dépende pas du choix du scindement de
Heegaard de M.

d) Nous verrons au paragraphe 4 que < @1, éz >4 est toujours pair
(essentiellement car S3 — SO(3) est un revétement double). Ceci explique le
facteur 1/2.

3.15*%. Remarques. a) A\(— M, F, W,, W,) = —AN(M, F, W;, W)

En effet si I’on change ’orientation de M on change simultanément celle
de F, donc & devient & ~!. Ainsi la nouvelle évaluation 9 est le composé de
I’ancien 9 et de ’application inverse de S? qui renverse ’orientation de S3, il
suit alors de 3.11 que Porientation de R donc celle de R est renversée et le
numérateur de A change de signe, tandis que le dénominateur est évidemment
inchangé. [

b) exercice: A(M, F, W,, W) = MM, F, W, W,)

3.16. PROPOSITION ET DEFINITION. L’invariant MM, F, W, W,) est
indépendant du scindement de Heegaard W, Y W, de M.

On le note A(M), c’est ’invariant de Casson de la sphére d’homologie M.

Démonstration de 3.16. D’aprés le théoréme de Reidemeister-Singer
(cf. [Si]) deux scindements de Heegaard de M sont stablement isomorphes. Il
suffit donc de montrer que A(M, F, W, W,) ne change pas dans une stabili-
sation élémentaire.

Dans une telle stabilisation la surface F devient F”, la somme connexe d’un
tore T avec F et W, devient W, somme connexe le long du bord d’un tore
solide T; avec W;. On peut choisir les générateurs a et b de 7,(7T) de sorte que
m(Fy) = <a,b>*n(Fy) et que a soit homotope a zéro dans 7, C W, et b
homotope a zéro dans 7, C W;. Ainsi on peut identifier Rj a
S3IXS3IX Ry, Q] aS3X1XQretQ; alxS3x Q,. On identifie Ry a
1 X1 XRset(Q;alx1xQ;dans R et une fois choisies les orientations
de S3, Ry, Q) et Q; on considere sur Ry, O et O, les orientations naturelles

induites. Ceci posé on a déja:
(Q1, 03)r, = (= 1)Im@AmEN(S3 % 1,1 X §3)s3 53 (Q1, Qa)r,
= (— 1)&(Q1, Qo)r,

Pour calculer <é{,é; >k, commen¢ons par noter que Q; N Q;
=1X1IX(QNn@) C1X1XR et que si & = [0F;] € m;(Fy) alors
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8" = [a, b]5. Donc la fléche d’évaluation d':Ri — S3 est donnée par
'(p’) =9d'(x, y,p) = [x, yY19(p) en posant p’(e) = x, p'(b) = y. Le calcul
de I’application tangente a 8’ en p’ donne (cf. 3.5) 7,8 =T, Oop
+ Adi,, ,;-10 T, (00g) ou & est I’application commutateur et ou p et g sont
les projections de Ri = S3 X S3 X Ry sur S3 X S? et Ry. En un point de
1 Xx1XR, puisque 7,1y =0 (cf. 3.7) on a T,,0" = T, (00q) et les
sous-variétés R’ = '~ I(1) et S3x S§3x R sont tangentes le long de
1 x 1 x R (cf. fig. 7). Bt donc R’ et $3 x S? x R sont localement difféo-
morphes prés de 1 X 1 X R D Ql N Q2 Enfm pursque 1 x 1 X R est pré-
serveé par ’action libre de SO(3) sur R’ et que R comme R’ s’identifient loca-
lement prés de 1x1Xxp a des variétés transverses a 1’orbite
(I1X1xp).SOB3)del X1 X ponvoitquepréesdel X 1 X ]3, R’ est difféo-
morphe & R3 X R3 X R (cf. fig. 8) On peut bien sir choisir les difféomor-
phismes precedents de sorte que (R’ Ql , Qz) soit localement difféomorphe
a (R3 X R3 X R R3 X 0 x Ql , 0 X R3 X Qz) pres de Q1 N Qz Par conséquent,
si Q1 et QZ sont transverses dans R (et donc Q1 et Q2 dans R’ d’aprés ce qui

préceéde), on a

/\, /\’ . . A . 3 A A
<Q1 ,Q2 >R’ = (— l)dlm(Ql)dlm(R) <R3XO,OXR3>R3><R3 <Q1,Q2 >1Az
A A
= (=D& 1< 01,0, >%

A

R
A’
~>]xIxp R

lexp .SO 3)
/

L~

FIGURE 7 FIGURE 8§

r r b \ /\ A A
En général on se raméne au cas ou Q, et Q, sont transverses dans R de
la manrere suivante. Soit h une isotopie a support compact de l’rdentlte de R
qu1 rend Ql transverse a Q2 Puisque ’on a vu que le fibré normal 3 R dans

R est trivial cette isotopie s’étend aisément en une isotopie & suport compact
de R’
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En définitive,

(- D1 < 01, 0 >i
(— 1D&(Q1, O)r,

<Qi,0:,>¢

—l(—-l)g =AM, F, W,,w,) [
2 (Q1, Oz, AR

1
MM,F', Wi, W;) = 5(— e+t

3.17*. PROPOSITION. L’invariant de Casson est additif pour la somme
connexe des spheres d’homologie orientées:

MM #M") = AM'") + M(M") .

Démonstration de 3.17. Soient W, u W, et W{ u W, des
Fl FII

scindements de Heegaard de M’ et M"'. La somme connexe M de M’ et de
M’ est munie du scindement de Heegaard somme connexe. On a
Ry, =Ri X R et Q;=Q; X Q. Et donc:

(Q1, Do)z, = (= DEE(Q] . Q3 )ry (O O3 )ry
ou g’ = genre(F’), g”’ = genre(F'’) .

Reste a calculer < @1, éz >#. Notons d’abord que I’évaluation
9: Ry, — S3 s’écrit 0’0", Par conséquent R contient R X 1 et 1 X R" et
d’autre part (cf. 3.7) T, x1(0) = T, x1(0"0p) + Adpr(py-10T, 1 (87 0q)
ou p et g sont les projections de Ry sur Rji et Ry et Tix,~(0)
= Tixp(@0p) + T, (@7 0q). Puisque 770" et 770" sont nulles (cf. 3.5)
on déduit que R’ X RY est tangent a R = 0-1(1) le long de R' X 1 et que
R X R" est tangent a R le long de 1 X R”.

Et, comme en 3.16, on voit que 1% contient R x 1 et 1 X I% comme sous-
variétés admettant des fibrés normaux triviaux isomorphes au produit de R’
et de R” par des voisinages de la représentation triviale dans Ry et R% respec-
tivement. On a une situation analogue pour é{ X 1etlxX é{’ dans él et
pour é; X 1letlX @2 dans éz, on a donc:

A A A A A A
(R, 01.Q) = (R"XR,(—D"Q1 X O, (—1)&"Q; X Q)
pres de R x 1 et un isomorphisme similaire pres de 1 X R".
Maintenant les éléments de Q; N Q,, c’est-a-dire les classes de conju-

gaison de représentations irréductibles de (M) = n,(M") * nt;(M"") se répar-
tissent en trois groupes:
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(i) Celles triviales sur m;(M'’), c’est-a-dire appartenant a

é{ X 1n é; X 1.

(ii) Celles triviales sur 7;(M’), c’est-a-dire appartenant a

1x0/n1xQy.

iii) Celles qui ne sont triviales ni sur m;(M") ni sur (M), c’est-a-dire
appartenant a ’ensemble des classes des éléments de

(@ N Q3) X (7' N Q3 -

Comptons la contribution apportée a <Q1,Q2 >p par les pomts de
Q1 N Qz dans les trois cas précédents. On peut tout d’abord rendre Ql trans-
verse a Q2 par une isotopie a support compact de R X 1et Q transverse a

;’ par une isotopie a support compact de 1 X R” . Puisque R x 1
N1 xR = & on peut étendre ces isotopies en une 1sot0pie a support
compact de R

Si un point de él N éz est dans le groupe (i) le difféomorphisme local
autour de R’ x 1 ci-dessus montre qu’il contribue pour
<0} X 07,05 X 0F >hxry = (=D& V<0, 05 > Q1) O3 )ry
puisque d’apres le lemme 3.8 iii), Q" et O, sont transverses en la représen-
tation triviale et le signe attribué a cette intersection est (Q{", @5 )ry -

De méme si un point de él N @2 est dans le groupe (i1) il contribue pour

(— DE"-D8(Q] , 0} )ry < OF, 05 > i
Montrons enfin que les points de Ql N éz dans le groupe (iii) ne
contribuent pas a <é1,é2 >r. Pour cela remarquons que R’ % R"
préimage de (1, 1) par la submersion (8’,8""): R n (R} X RY)— S3 x 83, est
une sous-variété de R N (R* X R %) €t que laction a droite de S3 x S3
sur R N (R:k ><R*) donnée par (p’,p”).(g",g") = (p’ .g p”.g") induit

une actlon libre de SO(3) x SOQ3) telle que le quotient R obtenu contienne

R x R" comme sous-variété. De plus si % est ’ouvert de R quotient de
RN (R* X RY) par l’actlon de SO(3) (qul est diagonale sur R X R/, ¥)yona
une SO(3)-fibration 02z—>R Soit aussi Q, le quotient de Ql A (RL X R%)
par la m€me action de S3 x S3; c’est une sous-variété de R Les images des

points du groupe i) sont dans R’ R" donc en fait dans Q1 N Qz

C R x R” C R. Si on rend Q1 et Qz transverses dans R’ x R" par une
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A A

. - \ A A . . . .
1sotopie a support compact alors Q; N Q, devient un nombre fini de points

A
N

A N
et R” X R étant de codimension trois dans R on peut pousser, prés de

A A A
N A

A A A A Q A
Q1 N Oz, Op hors de R” X R et ainsi disjoindre Q; de O, par une isotopie a

A

support compact dans IAB Cette isotopie se releve dans 022 C I% en une isotopie

qui est ’identité sur R x1uUlxR" CR- % donc qui ne modifie pas les

points des groupes i) et ii) mais qui fait disparaitre les points du groupe iii).
En définitive il vient pour A(M):

(- DEE-D <0, 05 > (01, 03 )ry
(- DE" (), 03wy Q1 OF)rz
(= DD (Q], 03)ry <OV, Q5 > i
(— D& (Q1, O3)r (Q1, Q) )ry
1 ,<01,0; >r .\ 1(_1)g,,< O, Q) >ry
2 ©Q;,03)r, 2 Q1) O3y
=AM + Ay . O

1
7\‘ _ _ g/+ 124
(M) 2( 1)e %

4. DEMONSTRATION DES PROPRIETES 1) ET 2) DE L’INVARIANT DE CASSON

4.1. LEMME. (i) Soit K un nceud dans une sphére d’homologie M, alors
il y a un scindement de Heegaard W, u W, de M tel que K soit une
courbe séparante de la surface F. d

(i) On peut méme demander a W; d’étre un bicollier autour d’une
surface de Seifert pour K.

(iii) Si (K, L) est un entrelacs bord dans M, on peut demander que K
et L soient sur la surface F et la séparent en trois parties.

Démonstration de 4.1. Soit S une surface de Seifert pour le noeud K dans
Met S X [—1,1] un bicollier autour de S. Considérons M comme S X [— 1, 1]
u H! v H? U H? ou H! est une union disjointe d’anses d’indice 1 dont, par
isotopie, on peut supposer toutes les spheres d’attachement dans S X 1 et ou
H? et H3 sont des unions disjointes d’anses d’indices 2 et 3 respectivement.
Alors W, =Sx[-1,11UH\, W,=H?>*UH? e F=0W; convient
pour (i).

. Pour (ii) écrivons d+*H'! pour I’adhérence de la partie de dH! qui ne
rencontre pas S X 1. Alors S* =S X 1 Ud*H! est la surface de Seifert
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