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UU
Le nœud Kn

Le nœud trivial K°

Figure 4

Le nœud de trèfle K
Figure 5 Figure 6

où l'on a noté Kn le nœud K C Ci représenté sur la figure 5 (la bande
verticale représente n tours complets). Soit C' un cercle dénoué enlaçant la
bande verticale du nœud Kn (cf. fig. 6). On a:

li*(C',Kn) - \i(Kn)

Un changement de croisement porté par un nœud parallèle à C' est disjoint
du disque D' bordant C' et transforme aussi Kn en Kn±l donc le lemme 2.8

nous donne que p*(C",AT") est indépendant de n. Or K° est le nœud trivial
et K~l est le nœud de trèfle T (cf. fig. 5), ainsi:

\x*(C\K°) n(D
et \i*(C,K) - n\x(T)

1 1

Comme -À^'(l) 1, les invariants X' et -A"(1)X'(T) ont même

variation par changement de croisement. Alors les deux invariants X' et

-A"(l)^'(^) sont égaux car ils coïncident sur le nœud trivial.
2

3. Construction de l'invariant de Casson

A. Représentations dans S3 SU(2)

On identifie le groupe de Lie SU(2) à la sphère S3 des quaternions de

norme un. L'algèbre de Lie de ce groupe est notée âf et s'identifie aux
quaternions purs.

Pour tout groupe discret F on note i?(r) l'espace des représentations de T
dans le groupe S3. Cet espace Z?(r) est muni de la topologie compacte
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ouverte, ainsi R est un foncteur contravariant de la catégorie des groupes dans

celle des espaces topologiques. On désigne par S(r) le fermé de i?(F) formé
des représentations réductibles, c'est-à-dire ici des représentations d'image
abélienne, et par i?(T) l'ouvert complémentaire (formé des représentations

irréductibles).
Si L est un groupe libre de rang fini k, étant donné une base (ai, ak)

de L, l'association à p e R(L) de (p(tfi), pfe)) e (S3)k détermine un
homéomorphisme entre R(L) et (S3)k.

Un changement de base se transcrit en une application à composantes
polynômiales, donc C00, de (S3)k. On peut donc munir R(L) naturellement
d'une structure algébrique lisse qui rend difféomorphisme l'homéomorphisme
précédent.

Soit T un groupe de présentation finie isomorphe à L / <N> où L et N
sont des groupes libres munis de bases de rang k et r respectivement (et <N>
est le sous-groupe normal dans L engendré par N). Le difféomorphisme
précédent entre R(L) et (S3)k identifie R(G) à la préimage de (1, 1) g (S3)r

par une application P à composantes polynômiales de (S3)k vers (S3)r.
Comme précédemment les changements de bases se traduisent par des
applications polynômiales et on peut encore munir i?(r) d'une structure algébrique
naturelle qui est lisse près de tout point régulier de P.

Le groupe S3 agit à droite par conjugaison sur i?(r): si p ei?(r) et

g e S\ on définit p.g par p.g(y) g~lp(y)g pour tout y e T. Cette action
est C00, se factorise à travers SO(3) S3/{ ± 1} et est libre sur ^(r). Donc
R(T) est l'espace total d'un SO(3) fibré principal i?(r) i?(r).

Groupes libres

3.1. Lemme. L'espace tangent à R(L) en la représentation triviale
s'identifie fonctoriellement à Hl(L\ Hom(L, S).

Démonstration de 3.1. Si t^ p, est un chemin C°° dans R(L) défini
pour t proche de 0 avec p0 la représentation triviale (qui vaut 1 e S3 sur tout
élément de L), pour chaque y g L on peut écrire p,(y) exp(ta(y) + Ö(t2))
pour un unique u(y) g S et t proche de 0. La condition p,(yy') p,(y)p,(y')
entraîne w(yy') u(y) + u(y') et donc u g Hl(L; 2).

3.2. Définition. Pour tout groupe T on a une transformation naturelle

\\f : H1 (T ; Z) -+ H3 (R (f) ; Z)
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qui à a e Hl(T; Z) Hom(r, Z) associe \j/(a) F(a)*([F(Z)]. On a noté
F (a): R(Z) R(T) l'application induite par Phomomorphisme a et [F(Z)] la
classe fondamentale1) de R(Z).

3.3. Lemme. Si L est un groupe libre de type finila transformation
\j/: ZF(L; Z) H3(R(L); Z) est un isomorphisme.

Démonstration de 3.3. Si on choisit une base au...,ak de L et si

ai,..., ak est la base duale de Hl(L; Z) définie par a,(a7) alors F(a/) est

l'inclusion de S3 R(Z) comme /ème facteur de (S3)k F(F) et donc

V(a,-) [1 x x S3 x x 1]. On conclut grâce au théorème de

Künneth.

3.4. Corollaire. Dans la catégorie des groupes libres de types fini, on a

un isomorphisme de fondeurs: O: H3*(R( ); Z) -> A*Hf ; Z).

Démonstration de 3.4. Si L est un groupe de cette catégorie par les

théorèmes des coefficients universels H3(R(L); Z) est fonctoriellement
isomorphe à Hom(H3(R(L); Z), Z) et HfL; Z) est fonctoriellement isomorphe
à Hom^if^Z,; Z), Z). Donc la transformation naturelle \|/ de 3.3 induit un
isomorphisme fonctoriel de H3(R(L); Z) sur Hi(L; Z). Cet isomorphisme
s'étend en O: H3*(R(L); Z) A*H3(R(L); Z) grâce à la formule de

Künneth.

Groupes de surfaces

Soit F une surface compacte sans bord orientée de genre g et désignons par
F* la surface F privée d'un disque ouvert. Choisissons un point base dans le

bord de F*. L'inclusion de F* dans F induit une surjection de tu (F*) sur

n\(F) à laquelle correspond une injection F (tu (F)) - F(7îi(F*)) dont l'image
est 6_1(1) où d: R(ni(F*)) S3 est l'évaluation: 9(p) p(ô), 8 [ÖF*]

e tti(F*). Rappelons que 7^(F*) est un groupe libre de rang 2g et que pour
un choix convenable de la base ai, b\, ag, bg on a ô [ai, b\] [ag, bg\.

Conventions

1) les bords sont orientés de sorte que (normale extérieure © orientation du

bord) donne une orientation de la variété à bord.

2) [a,b] a~lb~lab.

Celle qui va sur la classe fondamentale de S3 par l'homéomorphisme p H- p(l) entre
R(Z) et S3.
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3) On compose les lacets dans le même sens que les applications: parcourir

le lacet aß c'est d'abord parcourir le lacet ß puis le lacet a.

3.5. Proposition. L'ensemble singulier de 6 est l'espace S(jii(F*))
des représentations réductibles de nx (F*) dans S3.

3.6. Corollaire. Si g est supérieur à î,R(ni(F)) est une sous-variété

de dimension 6g — 3 de R{n\{Ffj) et R{n\{F)) est une sous-variété de

dimension 6g - 6 de R(jh(F*)). Si g l,R(ni(Fj) 0.
Démonstration de 3.5. On choisit une base ax, b\, ag, bg de

comme ci-dessus et on identifie R(tii(F*)) à (S3)2g, on pose aussi xt p(tf/)
et yi p (bi), 1 ^ / < g. Le fibré tangent à S3 est trivialisé par des champs de

vecteurs invariants à droite et on note exp: TiS3 S3 l'application
exponentielle. Rappelons que la représentation adjointe1) de S3 dans S? se

factorise par le revêtement double S3 SO(3) SO(5F) et que deux

éléments de S3 distincts de ± 1 commutent si et seulement si leurs images
dans SO(3) ont même ensemble de points fixes. La proposition 3.5 découle

alors du calcul de l'application tangente à l'application commutateur:

3.7. Lemme. L'application tangente en (x,y) à l'application commutateur

W: S3 x S3 S3 est l'application de f? définie par:
(u, u) »-> Ad^[(Id - Ady-i) (u) + (Ad*-i - Id) (0]

Démonstration de 3.7.

T&\{x,y){u, o) — [x~lexp(- tu)y-lzxv(tu)xyy-lx-lyx]\t o
dt

- x~lux + x~ly~luyx x~1y~1[u -yuy~l]yx
Le calcul de T^\{Xfy)(0,u) est analogue.

Suite de la démonstration de 3.5. Il suit du lemme 3.7 que T®I,*.* est

surjective sauf si Ad^-i et Adx-i ont un axe en commun c'est-à-dire sauf si a
et y commutent. (On convient que toute droite de R3 est un axe de l'identité
de SO(3)).

L'application tangente à 9 en (xj.ji, 5f2« ->• â? s'écrit
g i

X Ad<vJ, ° T'<o, où c0= l,c, n pour 1 < ; < g et (S3)2«
/ 1 j 1

-> S3 vérifie ïïfcx, yx, xg, yg) [x/,a|.

]) Si u e et g e S3, Adg(u) g~log.
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Donc si tous les xt et yj commutent, l'image de Td est contenue dans le

plan orthogonal à un axe commun aux Ad*-i et Ad^-i et Td n'est pas
surjective. Inversement si les xt et yj ne commutent pas tous entre eux alors

iou bien il existe un i tel que [xi9yi\ =£ 1 et alors déjà TïFii) est
g

surjective ou bien tous les commutateurs [xi9 yt] sont triviaux, 7c) £ TWi9
i 1

et il existe un xt et un Xj tels que Ad*.-1 et Ad^r1 n'aient pas d'axe commun
et donc Im(r§?/) + Im(TWj) S et Td\{Xl/yu„^Xgiyg) est surjective.

B. Définition de l'invariant de Casson d'une sphère d'Homologie M

Soit (M, F, W\, W2) Wx u W2 un scindement de Heegaard de genre g
F

d'une variété M de dimension trois orientée: la variété M est séparée par une
surface F de genre g en deux bretzels Wx et W2. Désignons par F* la surface

F privée d'un disque ouvert. On oriente F et F* comme bord de Wx qui porte
l'orientation induite de celle de M. Choisissons un point base dans le bord
de F*.

Les groupes fondamentaux de la surface à bord F* et des bretzels Wx, W2

sont libres, leurs espaces de représentations dans S3 sont donc des produits de

sphères de dimension trois.
Notons

R* R(ni(F*)),g, R(n,W)),Q2 et R Rin^F))
Les - et les a ont le même sens qu'au début de A: par exemple

Qi R{nx(Wx)) est l'espace des représentations irréductibles de nx(Wx) et

Qi R{nx(Wx)) est le quotient de Qx par l'action de SO(3).

Correspondant au diagramme de Van Kampen où toutes les flèches sont

des surjections:
nx(Wx)

nx{F*)nx{F) nx(M)
N /

nx(W2)

on a un diagramme d'injections d'espaces de représentations

I
Qi

R*^R Qng,
K) Q

02
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Remarquons que Qx est une sous-variété de R* de dimension moitié car on

peut choisir une base au bu ...,ag,bg de nx(F*) telle que al9 ...,ag soit une

base de nx(Wi). Il en est de même pour Q2.

3.8. Lemme. i) M est une sphère d'homologie entière si et seulement si

Vintersection homologique (Qi, Qi)r* de Qx et de Q2 dans R* vaut

± 1.

ii) M est une sphère d'homologie rationnelle si et seulement si Q\ et

Q2 sont transverses dans R* en la représentation triviale p0.

iii) Si M est une sphère d'homologie entière le signe de l'intersection en

Po est (Qi, Q2)r*

Démonstration de 3.8. Si M est une sphère d'homologie rationnelle on a

un isomorphisme de Mayer-Vietoris H[(W{; 2) ® H1 (W2; 2) H1 (F; S7)

\ i5f), qui peut être interprété comme un isomorphisme

Win.iW,); 2) © W(nx(W2); 2) - W(n2)
et le lemme 3.1 montre que cela équivaut àrpoQi © TPoQ2 TPoRce qui
établit ii).

Quant à i), identifions R* au groupe (S3)2g et soit m:Qi x Q2~^R*
l'application (qu q2) q\q2. D'après la fonctorialité de la formule de Kün-
neth le degré de cette application est le nombre d'intersection (Qx, Q2)R*. (On
peut aussi s'en convaincre en remarquant que le degré de m est égal au signe

près à celui de l'application m' où m'{quq2) (q\)~xq2, il suffit alors

d'isotoper Qx dans R* de sorte que Qx devienne transverse à Q2, la préimage
de 1 par m' est Qx n Q2 et les contributions locales de chaque point de

Qi n Q2 au degré de l'application m' et à (Qu Q2)R* sont alors clairement
égales).

Maintenant par l'isomorphisme du lemme 3.4 l'application

m* : H0s(R*; Z) H^(QX X ß2; Z) s H^(QX ; Z) (x) H^(Q2; Z)

correspond à l'application

A2gHx(F*l Z) ^ A2g(Hi(Wx; Z) © HX(W2; Z))

induite par les inclusions. D'après la suite de Mayer-Vietoris, Afest une sphère
d'homologie entière si et seulement si cette dernière application est un isomorphisme,

donc, si et seulement si le degré de m qui est (Qu Q2)R vaut ± 1.

Enfin iii) vient de ce que les deux signes cherchés se lisent sur la même suite
de Mayer-Vietoris comme on vient de voir.
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3.9. Corollaire. Si M est une sphere d'homologie entière Q\ n Q2

est compact.

Démonstration de 3.9. D'après ii) du lemme 3.8 si M est une sphère

d'homologie rationnelle la représentation triviale est isolée dans le compact
Ôi n Q2, donc Qx n Q2 - {1} est compact. Si de plus M est une sphère

d'homologie entière, la représentation triviale est la seule représentation
réductible de Qx n Q2 R(ni{M)) ainsi Qx n Q2 Qx n Q2 - S(nx{M))

Qi n Ô2 - {1} est compact.

3.10. Remarque. Soit T un groupe se surjectant sur un produit libre
Ti * r2 où Z/iOTi) et HX(T2) ont des éléments d'ordre supérieur à deux, alors

l'espace des représentations irréductibles de T est non compact. En particulier
si M est un fibré de Seifert dont la base est de caractéristique d'Euler inférieure
à - 1 ou si M est une somme connexe de deux variétés dont le Hx a des

éléments d'ordre supérieur à deux, Qx n Q2 est non compact.

Soient en effet pi:TX Z/pX et p2: r2 -> Z/qZ deux homomorphismes
surjectifs avec p > 2 et q > 2. Soient x et y dans i?- TXS3 avec \x\

\y\= 1. Définissons px>/. T -> S3 comme px>y o 71 où n : T -> Tj * r2 est une

(2npi(a) \
surjection et si a est dans Tx et b dans r2, px,y(a) exp I x\

/2jcp2(b) \
Px y(b) — exp I y I Cette représentation n'est irréductible que si x

\ Q

est différent de ± y.

3.11. Orientations de R*, R, R, Qx, Q2

Dans ce qui suit S3,Q{, Q2 et R* seront orientés de manière arbitraire
(mais fixée!). Ensuite SO(3) est orienté de sorte que le revêtement
S3 SO(3) soit localement un difféomorphisme préservant l'orientation et

toutes les submersions verront leur espace total orienté par la convention
base © fibre. Plus précisément, si p:E~+B est une telle submersion, si

b0 g B, si e0 e p ~1 (b0) et si (p : U x V -> E est une carte locale autour de e0

(où V est un voisinage de e0 dans p~l(bo) et U un voisinage de b0 dans B)
telle que (p \b0xv soit l'inclusion de V dans E et poq> la projection U x V

U alors on demande que (p préserve l'orientation.
~ — A

Ainsi R est orienté comme fibre de la submersion d:R* S3 et R (resp.
A A ~ A ~ A

ôi > Ô2) comme base du SO(3)fibré à droite R > R (resp. ->

à - Ö2).
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Les ensembles Qx et Q2 sont des sous-variétés fermées de dimension

moitié de la variété non compacte R. Comme d'après le corollaire 3.9

Q\ n Q2 est compact on peut définir un nombre d'intersection homologique

< Qu 02 >r de gl et Q2 dans R (cf. [D], VIII. 13). Ce nombre admet aussi

la définition géométrique suivante que nous utiliserons de préférence: on peut

rendre Qx transverse à Q2 par une isotopie à support compact, l'intersection

Qi n ^2 est alors un nombre fini de points munis chacun d'un signe selon la
A A

règle usuelle. La somme de ces signes définit < Q\t Q2> r car on montre

par des arguments classiques que cette somme ne dépend pas de l'isotopie
choisie.

3.12. Remarque (C. Lescop). On peut montrer le iii) du lemme 3.8 sans

utiliser l'isomorphisme de foncteurs du corollaire 3.4 de la façon suivante.

Etendons l'isotopie précédente en une isotopie à support compact de R*.AAA A

Puisque Qx et Q2 sont inclus dans R qui est de codimension trois dans R*,
A A A A A

on peut près de l'ensemble fini Qi n Q2, isotoper Q{ hors de R dans R*.
On relève ensuite la composition de ces deux isotopies à R* pour obtenir (en

prolongeant par l'identité sur S(7ti(F*))) une isotopie de R*, ht, 0 ^ t ^ 1,

telle que h0 id et hx(Qi) n Q2 {p0}. Donc (Ql, Q2)R^ est égal au signe de

l'intersection en p0 laquelle est transverse d'après 3.8 ii). (On trouvera un
argument semblable dans la démonstration de 3.17). Si l'on veut, on pourra
se passer dans la suite de l'article du corollaire 3.4 en utilisant à sa place le

lemme 3.1 et la présente remarque.

3.13. Définition. Soit {M, F, W1, W2) un scindement de Heegaard de

genre g d'une sphère d'homologie M. L'invariant de Casson de
(M, F, W\, W2) est:

A A

UM, F, Wu W2) =-(~l)g<gl,g2>*
2 (Qi » Qi)R^.

3.14. Remarques, a) Si g 1 on a < 0, 0 >0 0. D'ailleurs la seule
sphère d'homologie de genre ^ 1 est S3.

b) Si l'on change l'orientation de Q{ (ou de Q2) l'orientation de Q{
(resp. Q2) change simultanément et X(M,F, Wl9 W2) est inchangé. Il découle
aussi de 3.11 que X(M, F, Wx, W2) ne dépend pas non plus de l'orientation de
S3 ni de celle de R*.
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c) Le signe (- l)g sera expliqué dans la proposition 3.16, il est nécessaire

pour que l'invariant de Casson ne dépende pas du choix du scindement de

Heegaard de M.
A A

d) Nous verrons au paragraphe 4 que < Qx,Qi>r est toujours pair
(essentiellement car S3 -> SO(3) est un revêtement double). Ceci explique le

facteur 1/2.

3.15*. Remarques. a) X(-M,F, Wx, W2) -X(M,F, Wl9 W2)

En effet si Ton change l'orientation de M on change simultanément celle
de F* donc 8 devient 8 ~1. Ainsi la nouvelle évaluation 6 est le composé de

l'ancien 6 et de l'application inverse de S3 qui renverse l'orientation de S3, il
~ a

suit alors de 3.11 que l'orientation de R donc celle de R est renversée et le

numérateur de X change de signe, tandis que le dénominateur est évidemment

inchangé.

b) exercice: X(M, F, W2,WX) X(M,F, Wx, W2)

3.16. Proposition et définition. L'invariant X(M,F,WUW2) est

indépendant du scindement de Heegaard Wx u W2 de M.
F

On le note /(M), c'est Vinvariant de Casson de la sphère d'homologie M.

Démonstration de 3.16. D'après le théorème de Reidemeister-Singer

(cf. [Si]) deux scindements de Heegaard de M sont stablement isomorphes. Il
suffit donc de montrer que X(M,F, Wx, W2) ne change pas dans une stabilisation

élémentaire.

Dans une telle stabilisation la surface F devient F', la somme connexe d'un
tore T avec F et Wt devient W\ somme connexe le long du bord d'un tore
solide Ti avec Wim On peut choisir les générateurs a et b de nx(T) de sorte que
7Ci(Fi) < a, b> * 7ti (F*) et que a soit homotope à zéro dans T2 C W'2 et b

homotope à zéro dans Tx C W[ Ainsi on peut identifier R* à

S3 x S3 x R*, Q\ à S3 x 1 x gi et Q'2 à 1 x S3 x Q2. On identifie R* à

1 x 1 x et Qt à 1 x 1 x Qi dans R* et une fois choisies les orientations
de S3, jRi, Q\ et Q'2 on considère sur R*, Qx et Q2 les orientations naturelles
induites. Ceci posé on a déjà:

(ô; en*; (- l)dto<e,)dim(s3)(53 X l, 1 x S3)^ (QuQÔr,

(-l)*(Ôl,Ô2)*„

Pour calculer < Q\ ,0! >/c commençons par noter que Q\ n 0'2
1 x 1 x Q\nQt) C 1 X 1 x Ret que si ô' [ôFJ.] e Jti(Fi) alors
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5' [a, Z?]8. Donc la flèche d'évaluation d':R'*~*S3 est donnée par

a'(p') — §'(x,y, p) [x, j]9(p) en posant p'(#) p'(^) y- Le calcul

de l'application tangente à 9' en p' donne (cf. 3.5) 7^9' T^Wop
+ Ad[x>y]-i o TP' (9oq) où W est l'application commutateur et où p et q sont

les projections de R* S3 X S3 x R* sur S3 X S3 et R*. En un point de

1x1x7?, puisque J(i,d§? 0 (cf. 3.7) on a TP'd' TP'(doq) et les

sous-variétés R' 9,-1(l) et S3 x S3 x R sont tangentes le long de

lxl x R (cf. fig. 7). Et donc R' et S3 x S3 x R sont localement difféo-

morphes près de 1 x 1 x ^ D ÖJ n Ö2 • Enfin puisque 1 x 1 X R est pré-
~ A A

servé par l'action libre de SO(3) sur R' et que R comme R' s'identifient
localement près de 1 x 1 x p à des variétés transverses à l'orbite
(1 x 1 x p). SO(3) de 1 x 1 x p on voit que près de 1 x 1 x R, R' est difféo-

A

morphe à R3 x R3 x R (cf. fig. 8). On peut bien sûr choisir les difféomor-
A A A

phismes précédents de sorte que (R\ Q\ ,Qr2) soit localement difféomorphe
à (R3 x R3 x R, R3 x 0 x Qi, 0 x R3 x Q2) près de Qi n Q2. Par conséquent,

A A A A A A
si gi et Q2 sont transverses dans R (et donc Q[ et Q2 dans R' d'après ce qui
précède), on a

<Q\,Ql>R' (- l)dim(âi)dim(R3) < R3 X 0, 0 X R3 >R3xR3 < gi g2 > £

(-l)g-l<Qi,Q2>R

Figure 7

lxl xR D'^ R

lxlxp R'

(lxlxp).SO(3)

Figure

En général on se ramène au cas où Q, et Q2 sont transverses dans de
la manière suivante. Soit h une isotopie à support compact de l'identité de
qui rend Q, transverse à Q2. Puisque l'on a vu que le fibré normal à R dans

cette isotopie s'étend aisément en une isotopie à suport compact
de R'.
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En définitive,

1 — Ô2 ^ R
X(M,F\ W[,W'2) -(- 1)*+1

2 (-1H(ÖI,Ö2)^
A A

I - 1)« <&'&>* l(M,F,Wx,»',)
2 (Qi, Ö2)/?*

3.17*. Proposition. L'invariant de Casson est additif pour la somme
connexe des sphères d'homologie orientées:

MM'# M") X(M') + MM")

Démonstration de 3.17. Soient W\ u W'2 et MF" u MF^' des
F' F"

scindements de Heegaard de M' et M". La somme connexe M de M' et de

M" est munie du scindement de Heegaard somme connexe. On a

R* - R'* x R* et Qi Q\ x Q". Et donc:

(QuQiK (-D*'*"(QÎ .ôîmôî'.QÏV
où g' genre (Z7'), g" genre (Z7")

A A

Reste à calculer < Qu Qi>r> Notons d'abord que l'évaluation

d:R* S3 s'écrit 9'0". Par conséquent Z? contient R' x 1 et 1 x R" et

d'autre part (cf. 3.7) 7>xi(0) 7>x i(0'op) + Ad8'(P')-1 o T^x 1 (&'*oq)
où p et q sont les projections de Z?* sur Z?i et R* et Tx x P"(ö)

Tlxp*>(p'op) + Tixp''(d"oq). Puisque Txd' et T^B" sont nulles (cf. 3.5)

on déduit que R' x R* est tangent à R 6_1(1) le long de R' x 1 et que

Z?i x R" est tangent à Z? le long de 1 x R".
A A A

Et, comme en 3.16, on voit que R contient R' x 1 et 1 x R" comme sous-
A

variétés admettant des fibrés normaux triviaux isomorphes au produit de R'

et de R" par des voisinages de la représentation triviale dans R * et R* respec-
A A A

tivement. On a une situation analogue pour Q\ x 1 et 1 x Q[' dans Qx et
A A A

pour Q'2x1 et 1 X Q2dans Q2,on a donc:

(A Öl. 02) (Ä'x1 )*"Q\ X (- X Q'{)
A A

près de R' x 1 et un isomorphisme similaire près de 1 x R".
A A

Maintenant les éléments de Q{ n Q2, c'est-à-dire les classes de

conjugaison de représentations irréductibles de 711 (M) n\(M') * nx(M") se

répartissent en trois groupes:
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(i) Celles triviales sur n{(M"), c'est-à-dire appartenant à

Q\ x 1 n Ô2 x 1

(ii) Celles triviales sur tti(M'), c'est-à-dire appartenant à

1 x ô" n 1 x êz' •

iii) Celles qui ne sont triviales ni sur ni sur ni(Af"), c'est-à-dire

appartenant à l'ensemble des classes des éléments de

(è; nè;>x (ôr n gn •

A A

Comptons la contribution apportée à <Q\,Qi>r par les points de
A A A

Qi n Qi dans les trois cas précédents. On peut tout d'abord rendre Q[ trans-
A A A

verse à Q2 par une isotopie à support compact de i?' x 1 et Q" transverse à
A A A

Q'2' par une isotopie à support compact de 1 X R". Puisque i?' x 1

A

n 1 x R" 0 on peut étendre ces isotopies en une isotopie à support
A

compact de R.
A A

Si un point de Qi n Q2 est dans le groupe (i) le difféomorphisme local
A

autour de R' x 1 ci-dessus montre qu'il contribue pour

<ô; x er,Ô2 x q2=(- ,g; >R-(er. qd*Ï
puisque d'après le lemme 3.8 iii), <2" et Q" sont transverses en la représentation

triviale et le signe attribué à cette intersection est (Q[*>Q2)r'j •

A A

De même si un point de Ql n Q2 est dans le groupe (ii) il contribue pour

Montrons enfin que les points de ftn Q2 dans le groupe (iii) ne
A A _ _contribuent pas à <Qi,Q2>r- Pour cela remarquons que R'xR",

préimage de (1,1) par la submersion (8', 0") : n (R* x -> S3 x S3, est

une sous-variété de Rn(i?ix R'*')etque l'action à droite de S3 x S3

sur Rn(R'*xR*)donnée par (p',p").(g',g") (p'.g',p".g") induit
A

une action libre de SO(3)x SO(3)telle que le quotient R obtenu contienne
A A A /\R' x R" comme sous-variété. De plus si est l'ouvert de R quotient de

R n (R* x R*) par l'action de SO(3)(qui est diagonale sur R'* x R*) on a
A A

A

une 50(3)-fibration fy-* R.Soitaussi g, le quotient de Q, n
A

par la même action de S3 x S3; c'est une sous-variété de R. Les images des
A A A

A

points du groupe iii) sont dans R'xdonc en fait dans g, n Ô2

AAA A A

C R' xR" c R. Si on rend g, et g2 transverses dans R' x R" par une
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isotopie à support compact alors Q\ n Q2 devient un nombre fini de points
A A A

et R' x R" étant de codimension trois dans R on peut pousser, près de

AAA A AAAA A A A A

Qi n 62, ôi hors de R' x R" et ainsi disjoindre Q{ de Q2 par une isotopie à
A
A A A

support compact dans R. Cette isotopie se relève dans C Ren une isotopie

qui est l'identité sur R' x 1 u 1 x R" C R - % donc qui ne modifie pas les

points des groupes i) et ii) mais qui fait disparaître les points du groupe iii).
En définitive il vient pour X(M):

(-i)*"(*'-i)<Ô;, Q2 >R>(qï,Q'2')rv

+

(- l)g/g"(Q[ 02 )r'*(QÏ, QI)R'4

(-,Q'2)x.,<QÏ,Q'2'>fr
(-i)*'«"(e;,en«i(0r,er)*i'

=1 (_ ,k<QI'Q2>*- +
1

2 2 (qï,Q'2')*s

X(M')+ X

4. Démonstration des propriétés 1) et 2) de l'invariant de Casson

4.1. Lemme. (i) Soit K un nœud dans une sphère d'homologie M, alors

il y a un scindement de Heegaard Wx u W2 de M tel que K soit une
p

courbe séparante de la surface F.

(ii) On peut même demander à Wx d'être un bicollier autour d'une

surface de Seifert pour K.

(iii) Si (K, L) est un entrelacs bord dans M, on peut demander que K
et L soient sur la surface F et la séparent en trois parties.

Démonstration de 4.1. Soit S une surface de Seifert pour le nœud K dans

Met S X [- 1,1] un bicollier autour de S. Considérons M comme Sx [-1,1]
u H1 u H2 u H3 où H1 est une union disjointe d'anses d'indice 1 dont, par
isotopie, on peut supposer toutes les sphères d'attachement dans S x 1 et où

H2 et H3 sont des unions disjointes d'anses d'indices 2 et 3 respectivement.

Alors Wl S x [- 1„ 1] u H1, W2 => H2 u H3 et F dWi convient

pour (i).
Pour (ii) écrivons 9 +H1 pour l'adhérence de la partie de 9H1 qui ne

rencontre pas 5x1. Alors S+ S x 1 u d + Hl est la surface de Seifert
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