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Le nœud du docker

La démonstration de la proposition 1.3 est donnée au paragraphe 2. Elle
n'utilise que des méthodes classiques et peut être sautée en première lecture.

L'invariant de Casson est construit au paragraphe 3. La vérification des

propriétés 1) et 2) sera faite au paragraphe 4. Pour la propriété 8) on a besoin

d'un calcul explicite sur un exemple. Cela est fait en suivant Casson au

paragraphe 4 où (sans utiliser le théorème de Newstead!) l'on obtient une
formule (pas très explicite) pour le X' d'un quelconque nœud fibré (cf. 4.6).
Un autre calcul est donné dans l'appendice B de A. Marin qui montre que

X'(K) -À^'(l) pour un nœud K admettant une surface de Seifert dénouée

de genre 1. Enfin, dans l'appendice C, C. Lescop calcule directement, à partir
de la définition du paragraphe 3, l'invariant de Casson des sphères d'homo-
logie qui sont des fibrés de Seifert avec trois fibres exceptionnelles. L'appendice

A est consacré au polynôme d'Alexander et à son rapport avec l'invariant
de Rohlin-Robertello.

2. Démonstration de la proposition (1.3)

Elle se fait en deux étapes: dans un premier temps on montre que 0), 1)

et 3) impliquent l'unicité de X et les points 4), 5) et 6). Ensuite on montre

que 2) implique 3).

A. Unicité de X et 4), 5), 6) sachant 0), 1) et 3)

2.1. Lemme. Soit M une sphère d'homologie. Alors M est le dernier

élément Mn d'une suite M0, Mn de sphères d'homologie telles que:
M0 est la sphère S3 et chaque M/+1 est obtenue à partir de la précédente

Mi par une chirurgie de coefficient sf ± 1 sur un nœud Kl
de Mi.
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Démonstration. Remarquons d'abord que si un entrelacs (K, L) dans une

sphère d'homologie Ma un nombre d'enlacement 1{K, L) nul il y a une surface

de Seifert pour L disjointe de K; ainsi une section du fibré normal à L est

repérée par le même nombre entier, que L soit considéré comme nœud dans

la sphère d'homologie M ou dans celle obtenue par une chirurgie de coefficient

s ± 1 sur le nœud K. Il suffit donc de montrer que M est obtenue par

chirurgie sur un entrelacs {K1, ...,Kn) de S3 avec tous les nombres

d'enlacement l(Kl,Kj) nuls et les coefficients 8/ valant ± 1.

D'après un théorème classique M s'obtient par chirurgie entière sur un
entrelacs de S3. Quitte à faire une somme connexe avec ± CP2 on peut

supposer que la forme d'intersection de la trace de la chirurgie est indéfinie

et impaire. Comme M est une sphère d'homologie cette forme est de plus

unimodulaire, elle est donc diagonalisable (cf. [Se] p. 92). Il suffit alors de

réaliser la diagonalisation par glissement d'anses.

L'unicité suit alors de la formule 3) par récurrence sur la longueur n de

la suite donnée en 2.1.

2.2. Démonstration de 4). Si une section du fibré normal à un nœud K dans

une sphère d'homologie orientée M est repérée par e ± 1, elle est repérée

par - 8 si l'on considère K comme nœud dans la sphère d'homologie - M
obtenue en changeant l'orientation de M. La formule 4) découle alors de 3)

par récurrence sur la longueur n de la suite de 2.1 puisque le polynôme
d'Alexander de K ne dépend pas de l'orientation de M (cf. appendice A). La
récurrence débute avec X(-S3) X(S3) 0 car S3 est amphichérale.

2.3. Démonstration de 5). Elle s'obtient encore par récurrence sur la somme
des longueurs m et n de suites produites par 2.1 pour Met N respectivement,
une fois que l'on a remarqué que si K est un nœud dans M son polynôme
d'Alexander est le même qu'on le considère comme nœud dans M ou dans la
somme connexe M#N.

2.4. Démonstration de 6). D'après 2.1 la propriété 6) découlera des

propriétés 0), 1) et 3) et de la proposition 2.5 ci-dessous.

2.5. Proposition. Soit K un nœud dans une sphère d'homologie M et
8 ± 1; alors

p(M,#e) - p(M) 1) mod 2
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Démonstration de 2.5. Soient V et V' des variétés spin de dimension

quatre qui bordent M et M' (M, Ke) respectivement. Les formes
quadratiques de V et V' sont unimodulaires paires et leurs signatures sont divisibles

par 8 (cf. [HNK] Theorem 6.3); les invariants de Rohlin de M et de M' sont

par définition les réductions modulo 2 des quotients o(V)/8 et g(V')/8.
Soit W l'union de V et d'une anse d'indice 2 attachée le long de K au

moyen de la trivialisation déterminée par le coefficient s ± 1. Le bord de

W' est M' et l'on peut former la variété fermée W W' u (- V'). L'union
F de l'âme de la chirurgie et d'une surface de Seifert F' du nœud K dans M
est une surface caractéristique de W, donc son auto-intersection F. F est

congrue modulo 8 à la signature o( W) de W. La formule de Rohlin (cf. [RI]

ou [GM]) détermine la classe de congruence modulo 16 de o(W):

g{W) - F. F
Arf (\|/) mod 2

8

Ici la forme de Rohlin \p de la surface caractéristique F coïncide avec q2,

la réduction modulo 2 de - q où q est la forme quadratique du nœud1) K;
2

Arf(\|/) est donc R(K) l'invariant de Rohlin-Robertello du nœud K (cf. appendice

A). On a g(W) g(W') - o(F') o(F) + s - o(F'). Comme l'auto-
intersection F. F de la surface F dans W vaut s la proposition 2.5 découlera

du lemme A2 ci-dessous qui sera démontré dans l'appendice A.

A.2. Lemme. Soit K un nœud dans une sphère d'homologie M, alors

l'invariant de Rohlin-Robertello de K est la réduction modulo 2 de

B. Démonstration de 3) sachant 2)

1er pas: Réduction au cas où K est un nœud dans S3

Elle se fait par récurrence sur le nombre n donné par le lemme 2.1.

Supposons 3) montrée pour les nœuds dans les sphères d'homologie M qui
s'obtiennent à partir de 53 par une suite de moins de n chirurgies de coefficient

± 1 (si n 1 on suppose donc que 3) est vraie pour les nœuds dans S3),

et soit L' un nœud dans une sphère d'homologie M' (M,KZ) obtenue par
chirurgie sur le nœud K de M avec le coefficient 8 ± 1.

Plus précisément de la forme quadratique de la surface de Seifert F' du nœud K
(cf. Appendice A ou [G], pp. 30-33).
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2.6. Lemme. Le nœud Lr est isotope dans M' à un nœud L dans

MnM' formant avec K un entrelacs bord (F, F) dans M.

Démonstration de 2.6. Une longitude du tore n M) est encore

un parallèle du tore Af'\int(Mn AT) puisque son intersection avec un

méridien de Af'Xint (Af n M') est ± 1. Donc à collier de bord près, une surface

de Seifert F pour F C M fournit une surface de Seifert F* pour F* C M' âme

du tore AT \int(Af n M'). Si G' est une surface de Seifert pour L' dans AF,

puisque toute surface de Seifert est voisinage régulier d'un bouquet de cercles,

G' est isotope à une surface G telle que F* n G — 0 et donc si L 8G, on

a F C M et (F, F) est un entrelacs bord dans M.

Comme X' est un invariant des classes d'isotopie de nœud et d'après la

propriété 2) on a

À/(F' C M') X\L C M') X\L CM) + e.X"(F,F) A/(F C M)
D'autre part, comme tout cycle c de G est disjoint de F* le nombre

d'enlacement /(F*, c) est nul et on peut pour calculer la matrice de Seifert de G faire
border à une base de Hi(G;Z) des surfaces disjointes de F*, donc dans M,
et les nœuds (F ' C Mr) et (F C M) ont même matrice de Seifert donc même

1 1

polynôme d'Alexander en particulier -à(l,cm,)(1) -À(^CM) (1) et l'égalité

1

X'{L' C M') - A(£*CAr)(l).X'(T) suit de l'hypothèse de récurrence

r(FcM)^A;;CM)(i)im

2e pas: Cas où K est un nœud dans S3

On sait qu'en changeant successivement certains croisements du nœud F

on peut le rendre trivial. Comme l'invariant de Casson X' et - À"(l). X'{T)
2

coïncident pour le nœud trivial il suffit pour établir 3) de montrer que ces deux
invariants varient de la même manière quand on change un croisement.

Soit F un nœud dans S3 et C un cercle bord d'un disque D coupant F
transversalement en deux points avec intersection algébrique nulle. La sphère
d'homologie C£ est difféomorphe à S3 et le nœud (F C C8) s'identifie à un
nœud dans S3 que l'on peut voir comme le nœud F après que l'on ait changé
de - e à s le signe d'un croisement entre les deux brins de F perçant D
(cf. fig. 2).
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Soit p un invariant défini sur les nœuds dans S3 et à valeurs dans Z

(par exemple p X' ou p - A"(l). X'(T)).
2

2.7. Définition. Le nœud obtenu par le z-changement de croisement (D, C)
est par définition le nœud (K C Ce).

Deux changements de croisement sont dits non enlacés si ils sont portés par
deux disques D et D' disjoints tels que les deux paires de points K n D et

K n D' sont non enlacées sur K.
La variation de p par le changement de croisement (£>, C) est:

p*(C,K) \x(KCCx) - \x{K)

Remarquons que si p X\ alors p*(C,K) X"(C,K). D'autre part on ne
considère que le changement \i(K C Q) - p(iO, car le changement
p(ATC C_0 - \i(K) vaut -(p {K' C Cx) - p {K')) où K' C S3 s'identifie à

1

2.8. Lemme. Si p X' ou si p -À"(l) alors p*(C,K) est inva-
2

riant par changement de croisement non enlacé avec D.

Démonstration de 2.8. Soit D' le disque portant le changement de

croisement disjoint de D.

a) cas p X': Comme les deux changements de croisement sont disjoints les

cercles C et C' bordent dans le complémentaire de K des surfaces de Seifert

disjointes (cf. fig. 3). Donc (C, C') est un entrelacs bord dans Kx et

X'fx (C, C') 0 (où pour (L,M,N) un entrelacs dans une sphère d'homologie

on a noté X".(M,N) la valeur de l'invariant X" sur l'entrelacs (M,N) vu

comme entrelacs dans la sphère d'homologie Lx). Développons Xç,(C9K)

-X'c,(C9K):
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À,q(C, K) - X q (C, K) - X(C\, C0, K\) - X(C[,CUK0)

+ \(C\,Co,K0) - %(C'09CuKi) + » Co, K\)

+ UC'^CuKo)-HC'o,Co,Ko)

X(C\, Ci,K\) — HCl9 Co,KO — X(Cq,C\,K0

+ X{C'0,Co,KO

^(C,C#) 0

car (C/, C; ,^0) étant la sphère S3 pour ij e {0,1} est d'invariant de Casson

nul. On obtient de même Xc'^COK) — X'^{C,K) 0 ainsi X"(C,K) est

invariant par changement de croisement non enlacé avec D.

b) cas \i -A"(l).À/(r): D'après la formule de Conway (Lemme Al de
2

l'appendice A) on a:

A^cco« " A*(0 (^1/2 " ;1/2)A*0(O

où K0 est un entrelacs à deux composantes. En réappliquant la formule de

Conway au deuxième changement de croisement on obtient:

(A(tfC (cl5cg')(0 ~~ A(tfcc8')(0) ~~ (A^ccpCO — A^(0)

-s (t-l/2-t"0 AKoo(t)

La dérivée seconde en 1 du membre de gauche est, à - X'(T) près, la variation
2

de |li*(C, K) par le s-changement de croisement porté par D'. Comme les deux

changements de croisement sont disjoints l'entrelacs K0o a trois composantes
et Ajr00(l) 0. Le membre de droite de l'égalité ci-dessus étant produit de

trois fonctions qui s'annulent en t 1 a une dérivée seconde nulle en

t 1.

2.9. Fin de la démonstration de la propriété 3)

Soit K, C, D comme plus haut. Le disque D coupe le nœud K en deux arcs
A et B. Par changement de croisements disjoints de D on peut éliminer les
autocroisements de A puis, sans toucher à A, ceux de B. On peut donc, pour
calculer p*(C,iO, supposer que l'entrelacs (K, C) est celui dessiné sur la
figure 4.

Le nœud K étant alors trivial on a pour les deux invariants jLi(jLi A,' ou

n V'(l).r(D):

\i*(C,K) \i(K C
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UU
Le nœud Kn

Le nœud trivial K°

Figure 4

Le nœud de trèfle K
Figure 5 Figure 6

où l'on a noté Kn le nœud K C Ci représenté sur la figure 5 (la bande
verticale représente n tours complets). Soit C' un cercle dénoué enlaçant la
bande verticale du nœud Kn (cf. fig. 6). On a:

li*(C',Kn) - \i(Kn)

Un changement de croisement porté par un nœud parallèle à C' est disjoint
du disque D' bordant C' et transforme aussi Kn en Kn±l donc le lemme 2.8

nous donne que p*(C",AT") est indépendant de n. Or K° est le nœud trivial
et K~l est le nœud de trèfle T (cf. fig. 5), ainsi:

\x*(C\K°) n(D
et \i*(C,K) - n\x(T)

1 1

Comme -À^'(l) 1, les invariants X' et -A"(1)X'(T) ont même

variation par changement de croisement. Alors les deux invariants X' et

-A"(l)^'(^) sont égaux car ils coïncident sur le nœud trivial.
2

3. Construction de l'invariant de Casson

A. Représentations dans S3 SU(2)

On identifie le groupe de Lie SU(2) à la sphère S3 des quaternions de

norme un. L'algèbre de Lie de ce groupe est notée âf et s'identifie aux
quaternions purs.

Pour tout groupe discret F on note i?(r) l'espace des représentations de T
dans le groupe S3. Cet espace Z?(r) est muni de la topologie compacte
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