Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 38 (1992)

Heft: 3-4: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: NOTES SUR L'INVARIANT DE CASSON DES SPHERES
D'HOMOLOGIE DE DIMENSION TROIS

Autor: Guillou, L. / Marin, A.

Kapitel: 2. DEMONSTRATION DE LA PROPOSITION (1.3)

DOI: https://doi.org/10.5169/seals-59492

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-59492
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

238 L. GUILLOU ET A. MARIN

FIGURE 1
Le noeud du docker

La démonstration de la proposition 1.3 est donnée au paragraphe 2. Elle
n’utilise que des méthodes classiques et peut étre sautée en premiere lecture.
L’invariant de Casson est construit au paragraphe 3. La vérification des
propriétés 1) et 2) sera faite au paragraphe 4. Pour la propriété 8) on a besoin
d’un calcul explicite sur un exemple. Cela est fait en suivant Casson au
paragraphe 4 ou (sans utiliser le théoreme de Newstead!) ’on obtient une
formule (pas trés explicite) pour le A" d’un quelconque nceud fibré (cf. 4.6).
Un autre calcul est donné dans ’appendice B de A. Marin qui montre que

A(K) = —2—A % (1) pour un nceud K admettant une surface de Seifert dénouée

de genre 1. Enfin, dans ’appendice C, C. Lescop calcule directement, & partir
de la définition du paragraphe 3, I’invariant de Casson des sphéres d’homo-
logie qui sont des fibrés de Seifert avec trois fibres exceptionnelles. L’appen-
dice A est consacré au polyndme d’Alexander et & son rapport avec I’invariant
de Rohlin-Robertello.

2. DEMONSTRATION DE LA PROPOSITION (1.3)

Elle se fait en deux étapes: dans un premier temps on montre que 0), 1)
et 3) impliquent "unicité de A et les points 4), 5) et 6). Ensuite on montre
que 2) implique 3).

A. UNICITE DE A ET 4), 5), 6) SACHANT 0), 1) ET 3)

2.1. LEMME. Soit M une sphére d’homologie. Alors M est le dernier
élément M, d’une suite M,, ..., M, de sphéres d’homologie telles que:
M, est la sphére S3 et chaque M,;,, est obtenue a partir de la précé-
dente M, par une chirurgie de coefficient € = + 1 sur un neeud K’
de M,.
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Démonstration. Remarquons d’abord que si un entrelacs (K, L) dans une
sphére d’homologie M a un nombre d’enlacement /(K, L) nulily a une surface
de Seifert pour L disjointe de K; ainsi une section du fibré normal a L est
repérée par le méme nombre entier, que L soit considéré comme nocud dans
la sphére d’homologie M ou dans celle obtenue par une chirurgie de coefficient
g = + 1 sur le nceud K. Il suffit donc de montrer que M est obtenue par
chirurgie sur un entrelacs (K!, ..., K") de S® avec tous les nombres d’enla-
cement /(K?, K’) nuls et les coefficients g; valant + 1.

D’aprés un théoréme classique M s’obtient par chirurgie enti€re sur un
entrelacs de S3. Quitte 4 faire une somme connexe avec + CP? on peut
supposer que la forme d’intersection de la trace de la chirurgie est indéfinie
et impaire. Comme M est une sphére d’homologie cette forme est de plus
unimodulaire, elle est donc diagonalisable (cf. [Se] p. 92). Il suffit alors de
réaliser la diagonalisation par glissement d’anses.  []

L’unicité suit alors de la formule 3) par récurrence sur la longueur n de
la suite donnée en 2.1.

2.2. Démonstration de 4). Si une section du fibré normal a un nceud K dans
une sphére d’homologie orientée M est repérée par € = + 1, elle est repérée
par — € si ’on considére K comme nocud dans la sphére d’homologie — M
obtenue en changeant ’orientation de M. La formule 4) découle alors de 3)

par récurrence sur la longueur n de la suite de 2.1 puisque le polyndme

d’Alexander de K ne dépend pas de ’orientation de M (cf. appendice A). La
récurrence débute avec A(— S3) = A(S?) = 0 car S?® est amphichérale. [

2.3. Démonstration de 5). Elle s’obtient encore par récurrence sur la somme
des longueurs m et n de suites produites par 2.1 pour M et N respectivement,
une fois que ’on a remarqué que si K est un noeud dans M son polyndme
d’Alexander est le méme qu’on le considére comme nocud dans M ou dans la

.somme connexe M#N. L[]

2.4. Démonstration de 6). D’aprés 2.1 la propriété 6) découlera des
propriétés 0), 1) et 3) et de la proposition 2.5 ci-dessous. [

2.5. PROPOSITION. Soit K un noeud dans une sphére d’homologie M et
e= =1, alors

1
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Démonstration de 2.5. Soient V et V' des variétés spin de dimension
quatre qui bordent M et M’ = (M, K;) respectivement. Les formes qua-
dratiques de Vet V' sont unimodulaires paires et leurs signatures sont divisibles
par 8 (cf. [HNK] Theorem 6.3); les invariants de Rohlin de M et de M’ sont
par définition les réductions modulo 2 des quotients o(V)/8 et o(V")/8.

Soit W’ I’union de V et d’une anse d’indice 2 attachée le long de K au
moyen de la trivialisation déterminée par le coefficient € = + 1. Le bord de
W’ est M’ et ’on peut former la variété fermée W = W' u (— V”’). L’union
F de I’ame de la chirurgie et d’une surface de Seifert F' du nceud K dans M
est une surface caractéristique de W, donc son auto-intersection F.F est
congrue modulo 8 a la signature o(W) de W. La formule de Rohlin (cf. [RI]
ou [GM]) détermine la classe de congruence modulo 16 de o (W):

o(W)—-F.F
Arf(y) = 2 mod 2 .

Ici la forme de Rohlin y de la surface caractéristique F coincide avec q,,
1
la réduction modulo 2 de 5 g ou q est la forme quadratique du noeud!) K;

Arf (y) est donc R(K) I’invariant de Rohlin-Robertello du nceud XK (cf. appen-
dice A). Onaoc(W)=oc(W") —oc(V')=0c(V) + € — o(V’). Comme ’auto-
intersection F. F de la surface F dans W vaut ¢ la proposition 2.5 découlera
du lemme A2 ci-dessous qui sera démontré dans 1’appendice A.

A.2. LEMME. Soit K un nceud dans une sphére d’homologie M, alors
Uinvariant de Rohlin-Robertello de K est la réduction modulo 2 de

1
~AZ (D).
Ak )

B. DEMONSTRATION DE 3) SACHANT 2)
1¢r pas: Réduction au cas ou K est un noeud dans S3

Elle se fait par récurrence sur le nombre n donné par le lemme 2.1.
Supposons 3) montrée pour les noeuds dans les spheres d’homologie M qui
s’obtiennent a partir de S? par une suite de moins de n chirurgies de coeffi-
cient + 1 (si » = 1 on suppose donc que 3) est vraie pour les nceuds dans S?),
et soit L’ un nocud dans une sphére d’homologie M’ = (M, K;) obtenue par
chirurgie sur le noeud K de M avec le coefficient € = + 1.

1y Plus précisément de la forme quadratique de la surface de Seifert F’ du nceud K
(cf. Appendice A ou [G], pp. 30-33).

\
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2.6. LEMME. Le noeud L’ est isotope dans M’ a un nceud L dans
M M’ formant avec K un entrelacs bord (K,L) dans M.

Démonstration de 2.6.  Une longitude du tore M\int(M’ n M) est encore
un parallele du tore M’\int(M n M’) puisque son intersection avec un
méridien de M’ \int(M N M) est + 1. Donc a collier de bord prés, une surface
de Seifert F pour K C M fournit une surface de Seifert F* pour K* C M’ ame
du tore M’\int(M n M"). Si G est une surface de Seifert pour L’ dans M’,
puisque toute surface de Seifert est voisinage régulier d’un bouquet de cercles,
G’ est isotope a une surface G telle que F* N G = @ et donc si L = 9G, on
a L C M et (K,L) est un entrelacs bord dans M. [

Comme A’ est un invariant des classes d’isotopie de nceud et d’apres la
propriété 2) on a

ML CM)Y=AMNLCM)Yy=XMNLCM)+e.A"(K,L)y=N(LCM).

D’autre part, comme tout cycle ¢ de G est disjoint de F* le nombre d’enla-
cement /(K*, c) est nul et on peut pour calculer la matrice de Seifert de G faire
border a une base de H,(G;Z) des surfaces disjointes de K*, donc dans M,
et les noeuds (L' C M") et (L C M) ont méme matrice de Seifert donc méme

1 1
polyndme d’Alexander en particulier —Z-A(’i, ) = EA(’]: c a (1) et Iégalite
1
AL CM) = ‘Z‘A('z'xcM')(l) A(T) suit de [D’hypothése de récurrence

1
ML CM) = AL ()N (D). O

2¢ pas: Cas ou K est un nceud dans S3

On sait qu’en changeant successivement certains croisements du noeud K

.. : i 1
on peut le rendre trivial. Comme ’invariant de Casson A’ et EA”(I) AT

coincident pour le nceud trivial il suffit pour établir 3) de montrer que ces deux
invariants varient de la méme maniére quand on change un croisement.
Soit K un nceud dans S3 et C un cercle bord d’un disque D coupant K
transversalement en deux points avec intersection algébrique nulle. La sphére
d’homologie C; est difféomorphe a S3 et le nceud (K C C,) s’identifie & un
nceud dans S que ’on peut voir comme le noeud K aprés que ’on ait changé

de — ¢ a ¢ le signe d’un croisement entre les deux brins de K percant D
(cf. fig. 2).
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Soit p un invariant défini sur les nceuds dans S3? et a valeurs dans Z

1
(par exemple p =A" ou p = EA”(I).X’(T)).

2.7. Définition. Le noeud obtenu par le e-changement de croisement (D, C)
est par définition le nceud (K C C,).

Deux changements de croisement sont dits non enlacés si ils sont portés par
deux disques D et D’ disjoints tels que les deux paires de points K n D et
K n D’ sont non enlacées sur K.

La variation de | par le changement de croisement (D,C) est:

*(C,K) = nK C Cy) - p(K) .

Remarquons que si p = A’, alors p*(C, K) = A" (C, K). D’autre part on ne
considére que le changement up(K C C;) — pn(K), car le changement
LK CC_)) — u(K) vaut —(u(K’' C C)) — p(K")) ou K’ C 83 s’identifie a
K CC._,.

D/

FIGURE 2

FIGURE 3

1
2.8. LEMME. Si p=A" ousi u=5A”(l) alors pn*(C,K) est inva-

riant par changement de croisement non enlacé avec D.

Démonstration de 2.8. Soit D’ le disque portant le changement de
croisement disjoint de D.

a) cas p = A": Comme les deux changements de croisement sont disjoints les
cercles C et C’ bordent dans le complémentaire de K des surfaces de Seifert
disjointes (cf. fig. 3). Donc (C,C’) est un entrelacs bord dans K; et
Ak, (C,C") = 0 (ou pour (L, M, N) un entrelacs dans une sphére d’homologie
on a noté A, (M,N) la valeur de Iinvariant A’" sur P’entrelacs (M, N) vu
comme entrelacs dans la sphére d’homologie L;). Développons k’él, (C,K)
— ’C'é (C,K):

~
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&(C,K) = A (C,K) = MC;, C1,Ky) — MCy, Co, Ky) — MC1, G, Ko)
+ MCY, Co, Ko) — MCy, C1, Ky) + M(Cp, Cos Ky)
+ A(C}, Ci,Ko)— MCy, Co, Ko)
= 7V(Ciacl,Kl) - k(CLCo,Kl) - X(C(l),cl,Kﬂ
+ A(Cy, Co, K1)
= Ag (C,C) =0
car (C;, C;, Ky) étant la sphere S3 pour i, j € {0,1} est d’invariant de Casson

nul. On obtient de méme Ac: ](C,K) — ’C’é (C,K) = 0 ainsi A"(C,K) est
invariant par changement de croisement non enlacé avec D. O

1
b) cas p = EA”(I).K’(T): D’aprés la formule de Conway (Lemme Al de

I’appendice A) on a:
Agcey(t) — Ax(t) = (712 = t172) Ay, (1)

ou K, est un entrelacs & deux composantes. En réappliquant la formule de
Conway au deuxiéme changement de croisement on obtient:

(A(KC(CI,CS’)(t) - A(chg')(f)) — (Axcep® — Ax(1))
— 8.(t_1/2 — 11/2) (t—1/2 _ t1/2) AKoo(t)

1 -
La dérivée seconde en 1 du membre de gauche est, a 5 A’(T) pres, la variation

de u*(C, K) par le e-changement de croisement porté par D’. Comme les deux
changements de croisement sont disjoints ’entrelacs Ky a trois composantes
et Ag,,(1) = 0. Le membre de droite de I’égalité ci-dessus €tant produit de
trois fonctions qui s’annulent en =1 a une dérivée seconde nulle en

t=1. U
2.9. FIN DE LA DEMONSTRATION DE LA PROPRIETE 3)

Soit K, C, D comme plus haut. Le disque D coupe le nceud K en deux arcs
A et B. Par changement de croisements disjoints de D on peut éliminer les auto-
croisements de A puis, sans toucher & A4, ceux de B. On peut donc, pour

calculer p*(C, K), supposer que ’entrelacs (K, C) est celui dessiné sur la
figure 4.

Le neeud K €tant alors trivial on a pour les deux invariants p(p = A’ ou

1
b= EA"(I)-?»'(T))I

(G K) = p(K C Cy) = p(K™)
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Le neeud trivial K©

n tour —[MC
cortrcl)plests f ﬁ C >
“ n

N

n
Le neeud K Le noeud de tréfle K !

FIGURE 4 FIGURE 5 FIGURE 6

ou ’on a noté K” le nceud K C C; représenté sur la figure 5 (la bande
verticale représente n tours complets). Soit C’ un cercle dénoué enlacant la
bande verticale du nceud K” (cf. fig. 6). On a:

p*(C', K" = p(K"™ 1) — n(K™)

Un changement de croisement porté par un nceud parallele & C’ est disjoint
du disque D’ bordant C’ et transforme aussi K” en K**! donc le lemme 2.8
nous donne que p*(C’,K") est indépendant de n. Or K© est le nceud trivial
et K1 est le nceud de tréfle T (cf. fig. 5), ainsi:

u*(C, K"y = p*(C’, K% = u(7)
et w*(C,K)= —nu(T)..
1 o 1 A
Comme EAlT,(l)z 1, les invariants A’ et EA”(I)X'(T) ont méme
~ variation par changement de croisement. Alors les deux invariants A’ et

EA”(I)K'(T) sont égaux car ils coincident sur le noeud trivial. [

3. CONSTRUCTION DE L’INVARIANT DE CASSON

A. REPRESENTATIONS DANS S3 = SU(2)

On identifie le groupe de Lie SU(2) a la sphére S3 des quaternions de
norme un. L’algébre de Lie de ce groupe est notée & et s’identifie aux
quaternions purs.

Pour tout groupe discret I on note R(I') I’espace des représentations de I'
dans le groupe S3. Cet espace R(I') est muni de la topologie compacte

A\
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