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nombres de Betti que les variétés de niveaux [resp. de sous-niveaux] de la forme
2 2 2 2

quadratique - xx... - xp + xp+l... + xn.

Remarque. La condition n p + q ^ 3 est essentielle dans le théorème

(3.3). En effet, dans l'exemple (2.1), le sous-niveau {P<0} a m

composantes connexes.

(3.4) Corollaire. Si P appartient à avec n ^ 3 et m ^ 2,

alors l'ensemble défini par P 0 dans l'espace projectif réel est connexe.

4. Preuves

En dimension supérieure à 2, la proposition-clé suivante impose de sérieuses

restrictions sur les polynômes de H^q. On va l'utiliser à plusieurs reprises

dans la suite.

(4.1) Proposition. Si P e H{nm) avec n^ 3, alors l'application
P':Rn Rn est un homéomorphisme et sa restriction à R*\0 est un

difféomorphisme.

Preuve. Commençons par la deuxième affirmation. Soit P e H
d'après (2), l'application P': R* R" envoie Rn\0 dans lui-même. L'hypothèse

(1) garantit que P' est un difféomorphisme local de R*\0 dans lui-
même. Comme Pr est homogène, l'application 0:S*~1->S'7~1 donnée par
0(x) P'ix)/ | P'{x) | est aussi un difféomorphisme local et il suffit de montrer

que 0 est bijective. Or 0(S"_1) est ouvert et fermé; donc 0 est surjective.
Par suite 0 est un revêtement fini de S*-1. Puisque n ^ 3, S"-1 est

simplement connexe si bien que 0 est injective.
Pour vérifier la première affirmation, il suffit de remarquer que l'inverse

de P' | (R"\0) se prolonge continûment à R*.

Avant de commencer la preuve du théorème (3.3), donnons une version du
lemme 8.6 p. 191 de [8] bien adaptée à notre situation.

(4.2) Lemme. Si P e H{]q avec m^l et n p + q ^ 3 alors il
existe une fonction de Morse P e C°°(R") avec un seul point critique
d'indice p telle que: | x | ^ 1 => P(x) P(x).

Preuve. Soit co e C^R") tel que co(x) 1 si | * | < 1/2, co(x) 0 si
| x | ^ 1. Pour a e R"\0, on pose

P (x) P(x) - co(x) < x | a > xeR".
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En dérivant, il vient

P'(x) P'(x) - co'(*) {x | a> - co(x)a

et donc

| P'ipc) | ^ | P'(x) | - | cû'(x) I x II a | — | co(x) Il a |.

Pour | a | assez petit, il en résulte que

inf | P'(x) | ^ 1/2 inf | P'(x) | > 0
1/2 < ^ 1 1/2 ^ |*| ^ 1

Quand \x \ ^ 1/2, on a par construction P'{x) P'{x) - a. Le seul point
critique de P est donc b (P')~x(a). Quitte à prendre | a | encore plus petit,
on peut supposer | b | < 1/2, si bien que P"(b) P"{b). L'indice de Morse
de P en b vaut donc p.

Preuve du théorème (3.3). Les conditions de Palais-Smale (cf. [8] p. 179)

sont satisfaites pour les fonctions P et P du lemme (4.2) puisque

inf | P'(x) | inf | P'(x) | > 0
M^ i \x\> i

Pour a g R, notons

Pa {x g R" | P(x) ^ a} Pa {x g R" | P(x) < a}

les variétés de sous-niveaux de P et P de hauteur a. Posons

a0 sup|xki(|P(x) | + \P(x) I)

Puisque P a un seul point critique d'indice p situé dans {| x | < 1}, on a

(cf. [8] p. 188).

dimHk{Pa,P~a) bkp k=0,...,n, a ^ a0

où Hk désigne le £-ième groupe d'homologie à coefficients réels de la paire et

\bktP est le symbole de Kronecker. Mais, pour a ^ a0, Pa Pa et Pa
P ~ a. Donc

dim Hk(Pa, P~a) bk>p, k 0, n, a ^ a0

En utilisant maintenant les lemmes 8.3 p. 181 et 8.4 p. 183 de [8], on obtient

que Pa est rétracte fort par déformation de R", pour a ^ 0, et P~a est

rétracte fort par déformation de P°\0, pour a > 0. D'où, pour k 0, n:

dimHk(P«) dimHk(P°) 8kt0, a ^ 0

(4) dimHk(P~a) dimHk(P°\0), a>0,
| dim Hk(P°, P°\0) 6k,p
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La suite exacte longue d'homologie de la paire (P°,P°\0) s écrit

0 -» Hn(P°\0)- Hn(P°) -» H„(P°,-* i/„-i(P° \ o) -»

^ ff1(P°\0) H,(P°) ^ Hi(P°,P°\0) ->

-» H0(P°\0) - tf0(P°) - #o(P°, P°\0) 0

Lorsque p0, elle se réduit à

0 - H„(P°\0) -» 0 -> -»• 0 -> H0(P°\0) - R > R 0

si bien que dim Hk (P° \ 0) 0, Vk. Pour 1, elle se réduit à

->0->//i(P°\0)->0->R->//o(.P0\0)->'R->0

D'où dimH0(P°\0) 2 et dimif*(P°\0) 0 si 0. Pour 1, on

trouve dim/f*(P°\0) 0 si k* p- 1 ou 0, 1 sinon. En résumé,

0 si 0
dim/p(P°\0) {

ßk.p-1 + S*, o si 0

Pour la forme quadratique d'indice de Morse p, les relations (4) ont aussi lieu.

D'où le résultat sur les variétés de sous-niveaux.

Les nombres de Betti des variétés de niveaux de P peuvent être calculés avec

la suite de Mayer-Vietoris. En effet, les relations

p->(a) P° n (-P)_a et R" P" u (-P)~a, aeR,
donnent des suites exactes

0 - Hk(P ~1 (a)) Hk(Pa) © Hk{{ - P)«) - 0, pour k 0

0 -> H0(P-'(a))H0(Pa) © if0((- P)-°) R -> 0

Donc

dim//i(P"'(a)) dimÄit(P«) + dim//*.((-P) a), pour k 0

dim//o(P-'(a)) dim/f0(Pa) + dim/f0((- P)_a) - 1

Ces relations ont aussi lieu pour la forme quadratique d'indice p, d'où le

résultat sur les niveaux de P.

(4.3) Remarque. La preuve ci-dessus montre que les conclusions du

théorème (3.3) ont lieu lorsque P est une fonction de Morse sur R" ayant un
seul point critique d'indice p et satisfaisant les conditions de Palais-Smale.

Preuve du corollaire (3.4). Remarquons d'abord que F: P_1(0)
n S" -1 est une sous-variété lisse de dimension n - 2 de S"-1 puisque si x° est
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un point critique de P | S*-1, alors P'(x°) Xx°, avec X & 0 d'après (2),
donc P(x°) ^ 0 par Euler. De plus, l'intersection de V avec tout hémisphère
ouvert est dense dans l'intersection de V avec l'adhérence de cet hémisphère.
En effet, dans le cas contraire, V aurait une composante V\ contenue dans un
équateur de S"-1; pour raison de dimension, Vx serait égal à cet équateur et

ceci est absurde car P ne peut s'annuler identiquement sur un hyperplan
vectoriel. Le corollaire sera donc démontré si on vérifie que l'intersection de

V avec un hémisphère ouvert est connexe.
Si p n, un argument semblable à celui de la démonstration du

lemme (2.3) montre que sup(x|= \P(x) < 0. Donc V est vide.
Si p est compris entre 2 et n — 1, soit aeS"-1 tel que

sup|x(= iP(x) P(a). Comme au lemme (3.2), il vient que a est un vecteur

propre de P"(à) avec valeur propre positive. Puisque P' est bijective, la fonction

P | {a + aL) a un unique point critique en a; c'est donc une fonction de

Morse avec un seul point critique d'indice p et qui satisfait les conditions de

Palais-Smale. La remarque (4.3) s'applique et donne que P-1(0) n (a + a^)
est connexe {p > 1). Sa projection sur S"-1 est l'intersection de V avec un
hémisphère ouvert. Le corollaire est donc démontré dans ce cas.

Si p 1 ou 0, on raisonne avec - P.

(4.4) Proposition. Si P e et g ^ 1, alors il existe un (p + q - 1)-

plan vectoriel n tel que P | n e H{^q _ l.
Preuve. Si p 0, il n'y a rien à démontrer, car la restriction d'une forme

quadratique définie positive à un hyperplan est définie positive.

Supposons dorénavant p ^ 1. Pour tout p-plan vectoriel o de R" et x e g,
soit Xp(x, g) la plus grande valeur propre de P"{x) | g. Supposons que

(5) inf sup Xp(x, g) ^ 0
c 6 G(n,p) x | 1, x e a

où G(n,p) est la grassmannienne des p-plans vectoriels de R". Soient g0 et

x° e g0 des éléments qui réalisent le membre de gauche de (5). Comme

P"(x°) a au moins une valeur propre négative, il existe des p-plans o arbitrairement

voisins de o° tels que Xp(x°, o) < Xp(x°, g0). La relation (5) n'a donc

pas lieu et il existe un p-plan g tel que Xp(x, o) < 0 si | x | 1 et x e g.
Soit n un hyperplan de R" qui contient g. Puisque les valeurs propres de

P"(x) 17i et P"{x) | g sont entrelacées (cf. [3] p. 149), P"(x) | n a au moins

p valeurs propres négatives pour x e tc\0; de même, en comparant P"(x) et

P"(x) 17i, on obtient que P"(x) | n a au moins q - 1 valeurs propres positives.

Donc P 17C
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Preuve du Théorème (3.1).

a) Si est non vide, alors la proposition (2.4) entraîne n 2.

D'après le lemme (2.3), il faut que p q 1.

L'exemple (2.1) démontre l'implication en sens inverse.

b) Ce cas est trivial.

c) Compte tenu des exemples (2.1), (2.2) et de la proposition (4.4), on

peut supposer q 1 et n > 2. On procède par l'absurde en supposant qu'il
existe P e u l. Soient

Xi(x) > 0 > ^ ••• ^ K(x) x g Rw\0

les valeurs propres de P"(x). Pour a ^ 0, on définit

Paix)P(X) - a(+ + x2„)2

D'après les inégalités de Weyl (cf. [3] p. 157), les valeurs propres XaJ de

(Pa)" satisfont

Xj(x) - 4a \x\2 ^ XaJ(x) ^ Xj(x) - 12a |x|2 1 ^ n

Il existe donc a > 0 et a e R" tels que

(6) ^a,i ^ 0 > Xa>2 ^ ^ Xa>n et Xa i(a) 0

Le polynôme Pa est noté Q dorénavant. Deux cas peuvent se présenter.

1) Q"(a)a 0.

Par un changement linéaire de coordonnées, on se ramène à a (0,..., 0,1).
L'hypothèse donne Q'/n(a) 0 pour 1 <y ^ n, si bien que

Q(x)A(x') + B(x')x„ + C(x'),x' (x,,,
où A [resp. B] est homogène de degré 4 [resp. 3] et C est une forme quadratique
définie négative.

Le polynôme Qe(x) Q(x) + e(x2+ + x2)2 appartient à H(„4±ut, pour
e > 0 assez petit (inégalités de Weyl) et on a

0E(x) As(x')+ B(x')x„+ Cs(x')x2 + sx*

avec As homogène de degré 4 et Ce uniformément définie négative. Pour
r\ /-j

x' 6 R—»,|x'| 1, l'équation —(x',x„) 0 admet 3 solutions réelles
9x„

distinctes si s est assez petit car s'annule en x*= ±}/— Ce(x')/6s
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9ße _
a qe

et (x',xn > 0, (x',x„ < 0. Soient yX(x') < y2(x') < y3(x') ces
dxn dxn

solutions; l'application

Sn~2->Sn~2

X' ^ (Öe)'(x',j>i (*'))/I (ß8)'(x',*(*')) |

est continue injective. Son degré topologique vaut donc ± 1 et par suite, elle

est aussi surjective. Il en est de même pour y\(x') remplacé par y2(xf). On a

donc obtenu une contradiction avec l'injectivité de (QE)'.

2) Q"(à)b 0 pour a, b e R" linéairement indépendants.

Par un changement linéaire de coordonnées, on peut supposer
a (0, 0, 1) et b (1, 0, 0). L'hypothèse donne Q['j{à) 0, pour
1 ^j^n. Puisque la matrice {Q'/k{ä))2 <jik ^ n a toutes ses valeurs propres
négatives, on peut supposer, après multiplication de Q par un scalaire positif
que Q'n'n{a) - 12. Il existe un dernier changement linéaire de coordonnées

x Ux de la forme X\ xx, Xj
1

ujkXk,xn xn + £2
1

ukXk, tel que

Q(x) ' Q(Ux) satisfait Q"(a) diag(0, -2, -2, -12). En laissant

tomber les tildes, on est arrivé à la forme suivante:

Q(x)A(x') + B(x')xn + C(x")x2n x' (x,,

x"(x2,.Développons det Q"(x', 1) près de x0:

tB[\(x') 0 0 \
detQ"(x', 1) det I 0 C" 0 + <9(|x'|2), x* -+ 0

\ 0 0 -12/

Puisque det g" ne change pas de signe d'après (6), il faut que B[\ soit
identiquement nul. Les relations d'Euler 6£y'(1, 0, 0) Bj[\(\, 0, 0) pour
1 < j ^ n - 1 montrent que

(7) £(1,0, ...,0) £y'(l,0, ...,0) 0 1 ^ n - 1

Comme

Maintenant,
Comme plus haut, pour s > 0, soit QE(x) Q(x) + &(x2x + + x2n)2.

Q&(x) Ae(x') + B(x')xn + Ce(x')x2 - (1 - s)x4„

avec CE(x') 2zx\ - (1 - 2s) (x\ + + x2n_x). En particulier et d'après (7)
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- (1,0,0, x„)—? (1,0,0) +
dx, dx,

— (l,0,...,0,x„) — (l,0,...,0), 1

dxj dxj

— (1,0,0, x„)4ex„ - 4(1 - s)x3„
dx„

Par suite,

(ß,)'(l,0,...,0, -(/e/(l -e)) (ÔE)'(1,0,...,0, +1/8/(1 -£))

On est de nouveau en contradiction avec l'injectivité de (QE)'.

d) L'exemple (2.7) montre que H^mq est non vide pour m pair supérieur

ou égal à 6.

Preuve de l'application (3.2). Il suffit de prendre P e H{q et M de

la forme

{(x,P(x))|xeR«}
En effet, la courbure de Gauss-Kronecker est un multiple positif du
déterminant hessien de P (cf. [10], p. 93).

Réciproquement, si M est une hypersurface régulière de R" + 1 avec (i) et

(ii), alors M est localement le graphe de /: U -> R avec U ouvert de R"
contenant 0. On peut supposer /(0) 0 et / '(0) 0 sans changer la courbure.
Développons / en parties homogènes:

f(x) P(x) + 0(|xp + 1) x-+ 0

où P est un polynôme homogène de degré j ^ 2. On a:

K{{x,fix)) Ä(x)detP"(jc) + 0(\x\»ü-D)

avec h(0) > 0. La condition (i) entraîney m et detP"(x) ^ 0 pour x 0 (on
a utilisé | (x, /(x))| - | x |). Donc P e H(nm) et (ii) donne P e H(pm)q. D'après
le théorème (3.1), ceci n'est pas possible si m 4 et p ^ 0 et n.
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