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nombres de Betti que les variétés de niveaux [resp. de sous-niveaux] de la forme
. 2 2 2 2
quadratique X — X|... — X, + Xy 1. T X5

Remarque. La condition n=p +q >3 est essentielle dans le théo-
réme (3.3). En effet, dans I’exemple (2.1), le sous-niveau {(PL0} a m
composantes connexes.

(3.4) COROLLAIRE. Si P appartient a Hf,’") avec n>=3 et m22,
alors I’ensemble défini par P = 0 dans 'espace projectif réel est connexe.

4. PREUVES

En dimension supérieure a 2, la proposition-clé suivante impose de s€rieuses
restrictions sur les polynomes de Hﬁ,’f?]. On va D’utiliser a plusieurs reprises
dans la suite.

(4.1) PROPOSITION. Si PeH' avec n>3, alors l'application
P':R"—> R" est un homéomorphisme et sa restriction a R"\0 est un
difféomorphisme.

Preuve. Commencgons par la deuxiéme affirmation. Soit P € H f,m);
d’aprés (2), ’application P’: R” — R” envoie R”\0 dans lui-méme. L’hypo-
thése (1) garantit que P’ est un difféomorphisme local de R”\0 dans lui-
méme. Comme P’ est homogéne, ’application ¢:S”-1 — §”-1 donnée par
d(x) = P'(x)/ | P'(x) | est aussi un difféomorphisme local et il suffit de mon-
trer que ¢ est bijective. Or ¢p(S*~1) est ouvert et fermé; donc ¢ est surjective.
Par suite ¢ est un revétement fini de S”~!. Puisque n >3, S”-! est
simplement connexe si bien que ¢ est injective.

Pour vérifier la premicre affirmation, il suffit de remarquer que ’inverse
de P'| (R"\0) se prolonge continliment 8 R*. [

Avant de commencer la preuve du théoréme (3.3), donnons une version du
lemme 8.6 p. 191 de [8] bien adaptée a notre situation.

(4.2) LEMME. Si PeH\") avec m>2 e n=p+q>3 alorsil
existe une fonction de Morse P € C*(R") avec un seul point critique
d’indice p telle que: |x|>1= P(x) = P().

Preuve. Soit ® € CZ(R") tel que o(x) =1 si |x|<1/2, 0(x) = 0 si
4]x|> 1. Pour @ € R"\0, on pose

P(x) = P(x) —ox) (x|ay, xeRn,.
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En dérivant, il vient
P'(x)=P'(x - o'@®x|la) - o®a
et donc
[P@2 P -lo@lxlal-loe)|al.
Pour | a | assez petit, il en résulte que

inf  |P'(x)| > 1/2 inf |[P'(0)]| >0.

172<€ |x|< 1 1/72< x| 1

‘Quand |x|< 1/2, on a par construction P’(x) = P'(x) — a. Le seul point
critique de P est donc b = (P’) ~!(a). Quitte & prendre | a | encore plus petit,
on peut supposer | b | < 1/2, si bien que ﬁ”(b) = P’"(b). L’indice de Morse
de P en b vaut donc p. [

Preuve du théoréeme (3.3). Les conditions de Palais-Smale (cf. [8] p. 179)
sont satisfaites pour les fonctions P et P du lemme (4.2) puisque

inf |P'(x)|= inf |P'(x)|>0.

[x]>1 [x|>1

Pour a € R, notons
P ={xeR"|Px) <o}, Pi={xeR"|Pkx <o}
les variétés de sous-niveaux de P et P de hauteur a. Posons
ao = supjxj<1(| PG [+ [P ) ]) .

Puisque P a un seul point critique d’indice p situé dans {|x|< 1}, on a

(cf. [8] p. 188).
dimH,(P*, P-%) =&, k=0,...n a>a,,

ou Hj désigne le k-iéme groupe d’homologie a coefficients réels de la pairf, et

8y,, est le symbole de Kronecker. Mais, pour o = ao, Po = pegt P-u
= P~ Donc

dim Hy(P*,P~%) = 8,p, k=0,...,n, 0o2=00.
En utilisant maintenant les lemmes 8.3 p. 181 et 8.4 p. 183 de [8], on obtient

que P¢ est rétracte fort par déformation de R”, pour a > 0, et P~ * est
rétracte fort par déformation de P°\0, pour a > 0. D’ou, pour k = 0, ..., n:

‘ dim Hy(P®) = dimH,(P°) = 8,0, a0,
@) dim H, (P~ ¢) = dim H,(P°\0), a@>0,
dim Hy (P°, PO\O) = & , .

|

A
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La suite exacte longue d’homologie de la paire (P?, PO\ 0) s’écrit
0 — H,(P°\0) > H,(P° — H,(P° P°\0) > H,_, PON0O) — ...
.. = H;(P°\0) = H,(P°) — H\(P°, P°\0) —
— Hy(P°\0) = Hy(P%) — Ho(P°, P°\0) > 0.
Lorsque p = 0, elle se réduit a

O—*H,,(PO\O)—*O—>...—>O—>H0(P°\O)—>R—>R—>O,

si bien que dim Hy(P°\0) = 0, Vk. Pour p = 1, elle se réduit a
.= 0— H,(P°\0)> 0~ R~— Hy(P\0)~>R—0.
D’ou dim Hy(P°\0) = 2 et dim Hy(P°\0) =0 si k> 0. Pour p > 1, on

trouve dim H,(P°\0) = 0si k # p — 1 ou 0, = 1 sinon. En résume,

) 0 si p=0,
dim H,(P°\0) = )
Sk,p_1+5k,0 S1 p>0

Pour la forme quadratique d’indice de Morse p, les relations (4) ont aussi lieu.
D’ou le résultat sur les variétés de sous-niveaux.

Les nombres de Betti des variétés de niveaux de P peuvent &tre calculés avec
la suite de Mayer-Vietoris. En effet, les relations

P-Y(0)=P:n(-P)-* et R'=PU(-P)" ¢ aekR,
donnent des suites exactes
0— H(P-1(a)) » Hy(P) ® H,((-P)-*)—0, pour k>0,
0= Ho(P~1(a)) = Ho(P*) ® Ho((-P)~ %) >R~ 0.
Donc
dim H, (P~ 1(0)) = dim Hy(P®) + dimH,((—- P)~*), pour k>0,
dim Hy(P-1(a)) = dim Hy(P®) + dim Hy((— P)~¢) — 1.

Ces relations ont aussi lieu pour la forme quadratique d’indice p, d’ou le
résultat sur les niveaux de P. U]

(4.3) Remarque. La preuve ci-dessus montre que les conclusions du
théoréme (3.3) ont lieu lorsque P est une fonction de Morse sur R” ayant un
seul point critique d’indice p et satisfaisant les conditions de Palais-Smale.

Preuve du corollaire (3.4). Remarquons d’abord que V:= P-1(0)
N S7-1 est une sous-variété lisse de dimension n — 2 de S”~! puisque si x° est
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- un point critique de P|S7-1!, alors P’(x°) = Ax°, avec A # 0 d’aprés (2),
donc P(x%) # 0 par Euler. De plus, I’intersection de ¥V avec tout hémisphére
ouvert est dense dans ’intersection de V avec I’adhérence de cet hémispheére.
En effet, dans le cas contraire, V aurait une composante V; contenue dans un
équateur de S"~!; pour raison de dimension, V, serait égal a cet équateur et
ceci est absurde car P ne peut s’annuler identiquement sur un hyperplan
vectoriel. Le corollaire sera donc démontré si on vérifie que I’intersection de
V' avec un hémisphere ouvert est connexe.

Si p=n, un argument semblable a celui de la démonstration du
lemme (2.3) montre que sup|,|- 1 P(x) < 0. Donc V est vide.

Si p est compris entre 2 et n—1, soit aeS" ! tel que
sup|x|- 1P(x) = P(a). Comme au lemme (3.2), il vient que a est un vecteur
propre de P’'(a) avec valeur propre positive. Puisque P’ est bijective, la fonc-
tion P|(a + a*) a un unique point critique en a; c’est donc une fonction de
Morse avec un seul point critique d’indice p et qui satisfait les conditions de
Palais-Smale. La remarque (4.3) s’applique et donne que P~ 1(0) n (@ +a*)
est connexe (p > 1). Sa projection sur S”~! est I’intersection de V avec un
- hémisphére ouvert. Le corollaire est donc démontré dans ce cas.

Sip =1 ou 0, on raisonne avec — P. [

(4.4) PROPOSITION. Si P e Hgf’c)] et q=1, alorsil existe un (p+ q—1)-

plan vectoriel m tel que P|me H\)_|.

Preuve. Sip = 0, il n’y arien a démontrer, car la restriction d’une forme
quadratique définie positive a un hyperplan est définie positive.

Supposons dorénavant p > 1. Pour tout p-plan vectoriel c de R" et x € o,
soit A,(x, o) la plus grande valeur propre de P”(x) | 5. Supposons que
5) inf sup Ap(x,0) =20,

ceG(n,p) lx|=1, xeo

ou G(n, p) est la grassmannienne des p-plans vectoriels de R”. Soient ¢° et
x% € 09 des éléments qui réalisent le membre de gauche de (5). Comme
P”’(x%) a au moins une valeur propre négative, il existe des p-plans ¢ arbitrai-
rement voisins de ¢° tels que A,(x?, 6) < A,(x%, 6%). La relation (5) n’a donc
pas lieu et il existe un p-plan o tel que A,(x,c6) <O0si|x|=1c¢et x € o.

Soit m un hyperplan de R” qui contient ¢. Puisque les valeurs propres de
P"(x)| 7 et P”(x)| o sont entrelacées (cf. [3] p. 149), P”'(x) | a au moins
p valeurs propres négatives pour x € ©\0; de méme, en comparant P"(x) et
P (x) | m, on obtient que P’ (x) | © a au moins ¢ — 1 valeurs propres positives.
Donc P|n e HY" []

,q—1°
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Preuve du Théoréeme (3.1).

a) Si Hf'f]“) est non vide, alors la proposition (2.4) entraine n = 2.
D’aprés le lemme (2.3), il faut que p = g = 1.
L’exemple (2.1) démontre ’implication en sens inverse.

b) Ce cas est trivial.

¢) Compte tenu des exemples (2.1), (2.2) et de la proposition (4.4), on
peut supposer ¢ = 1 et n > 2. On procéde par ’absurde en supposant qu’il
existe P ¢ H® 1,1+ Soient

M) >0> M0 =... 20K, xeR™N0,
les valeurs propres de P”’(x). Pour a > 0, on définit
Py(x) = P(X) — 0.(x] + ... + x2)2,

D’apres les inegalités de Weyl (cf. [3] p. 157), les valeurs propres A, ; de
(P,)"" satisfont

Aj(x) —4a | x |2 = N ;) 2 A0 - 12a|x|2, 1<j<n.
Il existe donc o > 0 et a € R” tels que
©6) Aa1 20> A2 e 2han e Agi(@) =0.
Le polynéme P, est noté Q dorénavant. Deux cas peuvent se présenter.
1) Q"(a)a = 0.

Par un changement linéaire de coordonnées, on se raméne a a = (0, ..., 0, 1).
L’hypothése donne Q;;(a) = 0 pour 1 <j < n, si bien que

Q) = A(X') + B(X)x, + CXIX2, X = (X1, ., Xu_1) s

ou A [resp. B] est homogene de degré 4 [resp. 3] et C est une forme quadratique
définie négative.

Le polyndme Q. (x) = Q(x) + €(x} + ... + x%)2 appartient 3 H “: |, pour
g > 0 assez petit (inégalités de Weyl) et on a
Qs(0) = Ac(x") + B(x")x, + Cc(x")X% + ex* |
avec A, homogene de degré 4 et C, uniformément définie négative. Pour

x e R*1 | x’

oy prag . 0Qe : .

= 1, I’équation 5—— (x",x,) =0 admet 3 solutions réelles
Xn

d. . N . GZQS 3 +

1stinctes si € est assez petit car " s’annule en x; = +)/— C:.(x")/6¢

n
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t% %

(x',x,) >0, P (x',x7) < 0. Soient y;(x") < yo(x") < y3(x’) ces
Xn Xn

solutions; I’application

€

Sn—z - Sn~2
X' (Qe) (¢, 1 (x)) / 1(Qe) (', 1 (x) |

est continue injective. Son degré topologique vaut donc + 1 et par suite, elle
est aussi surjective. Il en est de méme pour y;(x") remplacé par y,(x’). On a
donc obtenu une contradiction avec I’injectivité de (Q,)’.

2) Q”(a)b = 0 pour a, b € R” linéairement indépendants.

Par un changement linéaire de coordonnées, on peut supposer
a=(,..,0,1) et b=(,0,...,0). L’hypothése donne Qi;(a) =0, pour
1 < j < n. Puisque la matrice (Q jf,’c(a))z <j,k<n A toutes ses valeurs propres
négatives, on peut supposer, apres multiplication de Q par un scalaire positif

que Q, (@) = — 12. 1l existe un dernier changement linéaire de coordonnées
x = Ux de la forme x, = X;, x; = Z;_lujk)?k,x,, =X, + EZ—luk)?k, tel que
O(x):= Q(Ux) satisfait Q’'(a) = diag(0, —2, ..., —2, —12). En laissant

tomber les tildes, on est arrivé a la forme suivante:

Q) = AE) + Bx)x, + Cx)x: — x4, X" = 0y ooy Xuo1)
X" = X2y cees Xn1)
Développons det Q' (x’, 1) prés de x” = 0:

Bix) 0 0
detQ”(x", 1) = det 0 c” 0 + O(|x’
0 0 —-12

2), x'—0.

Puisque det Q' ne change pas de signe d’apres (6), il faut que B;’I' soit iden-
tiquement nul. Les relations d’Euler 6B;(1,0, ...,0) = B;1(1,0,...,0) pour
1 <j < n— 1 montrent que

) B(1,0,...,0) = B/(1,0,...,0) =0, 1<j<n-1.

Comme plus haut, pour € > 0, soit Q.(x) = Q(x) + 8(x7f + ..+ x2)2,
Maintenant,

Q:(x) = A (x") + B(Xx)x, + Cc(x)x2 — (1 — g)x},

avec Co(x’) = 2ex> — (1 — 2g) (x2 + ... + x>_,). En particulier et d’aprés (7)
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0A,
00 1,0,...,0,x,) = (1,0, ...,0) + 4ex’,
8x1 X
80, 9A. _
¢ 1,0, ...,0,x,) = 1,0,...,0), 2<j<n—-1,
8xj an
00,
¢ (1,0, ...,0,x,) = 4ex, — 4(1 — g)x .
0x;,
Par suite,

0.)'(1,0,...,0, —)/e/A —¢) =(Q:)'(1,0, ...,0, + /e/(1 —¢)) .

On est de nouveau en contradiction avec I’injectivité de (Q,)’.

d) L’exemple (2.7) montre que H;,’f’; est non vide pour m pair supérieur
ouégalae. U

Preuve de !’application (3.2). 11 suffit de prendre P e HL’:’; et M de
la forme

{(x,P®)|x € R} .

En effet, la courbure de Gauss-Kronecker est un multiple positif du déter-
minant hessien de P (cf. [10], p. 93).

Réciproquement, si M est une hypersurface réguliére de R”*! avec (i) et
(i), alors M est localement le graphe de f: U — R avec U ouvert de R”
contenant 0. On peut supposer f(0) = O et £’'(0) = 0 sans changer la courbure.
Développons f en parties homogénes:

fx) =Px +O(x|*H, x-0,
ou P est un polyndme homogéne de degré j > 2. On a:
K((x, f(x)) = h(x)detP"(x) + O(|x|"U-D), x—0,

avec 7(0) > 0. La condition (i) entraine j = m et det P”'(x) # 0 pour x # 0 (on
a utilisé | (x, f(x))| ~ | x|). Donc P € H'™ et (ii) donne P e H™ . D’aprés
le theoréme (3.1), ceci n’est pas possible sim =4 et p#0etn. [J
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