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224 H.-M. MAIRE

P'n - (2k + 2) (2k + \)x\k+ 2--
P'2'2 -Ppp - 2(*+ l)xf + - 2zxf

^pH- l,p+ 1 ••• =-fn-l,n-l 2zx2k— + 2(ât + l)xf
P'„'n 2zxjk- 2zk(2k-X)x\x2k~2 + (2Ar + 2) (2/t + l)xf
p"n pn14eAr(xf ~'x„ -x,xf-1)

Par conséquent, en 0, 0, x„),

detP" (PnPZt-iPD^Pm-Pn-un-i •

Pour s assez petit on vérifie que P[\,Ppp sont négatifs et Pp+hp+ j,P"n
sont positifs pour (xi, 0,0, x„) ^ (0,0) (cette affirmation est fausse

pour k= 1, puisque dans ce cas - 12x^ s'annule pour x ^ 0). II
s'ensuit que P" a p valeurs propres négatives et q valeurs propres positives si

x * 0.

3. Enoncés des résultats

(3.1) Théorème. Supposons m, n ^ 2, p 0,..., n, q n - p. Alors
l'ensemble Hp q

est non vide si, et seulement si l'une des conditions
suivantes a lieu:

a) m est impair et p q 1 ;

b) m 2;

c) m 4 et p q — 1 ou p 0 ou q 0;

d) m est pair supérieur ou égal à 6.

(3.2) Application. Pour m pair ^6, n^2 et p 0,...,n, il existe

une hypersurface régulière M de classe C°° de R" + 1 contenant 0 telle

que la courbure de Gauss-Kronecker K(x) de M en x vérifie

(i) K(x)~ |xb-2) x^0.
(ii) L'hypersurface Map rayons de courbure principaux négatifs et

q rayons de courbure principaux positifs en tout point voisin de 0.

Il n'existe pas d'hypersurface avec ces propriétés si m — 4 et p ^ 0

et n.

(3.3) Théorème. Soit P e H{p^q avec m ^ 2 et n p + q ^ 3.

Alors les variétés de niveaux [resp. de sous-niveaux] de P ont les mêmes
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nombres de Betti que les variétés de niveaux [resp. de sous-niveaux] de la forme
2 2 2 2

quadratique - xx... - xp + xp+l... + xn.

Remarque. La condition n p + q ^ 3 est essentielle dans le théorème

(3.3). En effet, dans l'exemple (2.1), le sous-niveau {P<0} a m

composantes connexes.

(3.4) Corollaire. Si P appartient à avec n ^ 3 et m ^ 2,

alors l'ensemble défini par P 0 dans l'espace projectif réel est connexe.

4. Preuves

En dimension supérieure à 2, la proposition-clé suivante impose de sérieuses

restrictions sur les polynômes de H^q. On va l'utiliser à plusieurs reprises

dans la suite.

(4.1) Proposition. Si P e H{nm) avec n^ 3, alors l'application
P':Rn Rn est un homéomorphisme et sa restriction à R*\0 est un

difféomorphisme.

Preuve. Commençons par la deuxième affirmation. Soit P e H
d'après (2), l'application P': R* R" envoie Rn\0 dans lui-même. L'hypothèse

(1) garantit que P' est un difféomorphisme local de R*\0 dans lui-
même. Comme Pr est homogène, l'application 0:S*~1->S'7~1 donnée par
0(x) P'ix)/ | P'{x) | est aussi un difféomorphisme local et il suffit de montrer

que 0 est bijective. Or 0(S"_1) est ouvert et fermé; donc 0 est surjective.
Par suite 0 est un revêtement fini de S*-1. Puisque n ^ 3, S"-1 est

simplement connexe si bien que 0 est injective.
Pour vérifier la première affirmation, il suffit de remarquer que l'inverse

de P' | (R"\0) se prolonge continûment à R*.

Avant de commencer la preuve du théorème (3.3), donnons une version du
lemme 8.6 p. 191 de [8] bien adaptée à notre situation.

(4.2) Lemme. Si P e H{]q avec m^l et n p + q ^ 3 alors il
existe une fonction de Morse P e C°°(R") avec un seul point critique
d'indice p telle que: | x | ^ 1 => P(x) P(x).

Preuve. Soit co e C^R") tel que co(x) 1 si | * | < 1/2, co(x) 0 si
| x | ^ 1. Pour a e R"\0, on pose

P (x) P(x) - co(x) < x | a > xeR".
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