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224 H.-M. MAIRE

Pl = — 2k +2) Qk + D)xi* + 2ek 2k — 1)x**72x% — 2ex?

P}y = ...=Py,= —2(k+ Dx7* + 2ekx* "2x2 — 2ex?*
Py it = oo = Pyoy oy = 28x* — 28k X2 7% 4 2(k + 1)x2*-

P = 2ext* — 2ek 2k — 1)x3x2 72 + 2k + 2) Qk + 1)x2*

Pl =P = dek (X x, — xx2F7Y |
Par conséquent, en (x;,0, ..., 0, x,,),

det P = (P11 Py, — (P1)?) Py Py oy

Pour ¢ assez petit on vérifie que Py}, ..., P, sont négatifset P," , ., ..., P,
sont positifs pour (x;,0,...,0,x,) # (0, ...,0) (cette affirmation est fausse
pour k =1, puisque dans ce cas P}, = — 12x> s’annule pour x # 0). Il

s’ensuit que P’’ a p valeurs propres négatives et ¢ valeurs propres positives si
x+0. [

3. ENONCES DES RESULTATS

(3.1) THEOREME. Supposons m,n>=>2, p=0,...,.n, q=n—p. Alors
l’ensemble H Z g st non vide si, et seulement si [’'une des conditions
suivantes a lieu:

a) m estimpairet p=gq=1;
b) m=2;
c) m=4 et p=q=1 ou p=0 ou q=0;

d) m est pair supérieur ou égal a 6.

(3.2) APPLICATION. Pour m pair =26,n>2 et p=0,...,n, il existe
une hypersurface réguliere M de classe C> de R"+*! contenant 0 telle
que la courbure de Gauss-Kronecker K(x) de M en x vérifie

G K@) ~|x|"m-2 | x—0.

(1) L’hypersurface M a p rayons de courbure principaux négatifs et
q rayons de courbure principaux positifs en tout point voisin de 0.

Il n’existe pas d’hypersurface avec ces propriétés si m=4 et p+0
el n.

(3.3) THEOREME. Soit PeHY) avec m>2 e n=p+q>3.
Alors les variétés de niveaux [resp. de sous-niveaux] de P ont les mémes
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nombres de Betti que les variétés de niveaux [resp. de sous-niveaux] de la forme
. 2 2 2 2
quadratique X — X|... — X, + Xy 1. T X5

Remarque. La condition n=p +q >3 est essentielle dans le théo-
réme (3.3). En effet, dans I’exemple (2.1), le sous-niveau {(PL0} a m
composantes connexes.

(3.4) COROLLAIRE. Si P appartient a Hf,’") avec n>=3 et m22,
alors I’ensemble défini par P = 0 dans 'espace projectif réel est connexe.

4. PREUVES

En dimension supérieure a 2, la proposition-clé suivante impose de s€rieuses
restrictions sur les polynomes de Hﬁ,’f?]. On va D’utiliser a plusieurs reprises
dans la suite.

(4.1) PROPOSITION. Si PeH' avec n>3, alors l'application
P':R"—> R" est un homéomorphisme et sa restriction a R"\0 est un
difféomorphisme.

Preuve. Commencgons par la deuxiéme affirmation. Soit P € H f,m);
d’aprés (2), ’application P’: R” — R” envoie R”\0 dans lui-méme. L’hypo-
thése (1) garantit que P’ est un difféomorphisme local de R”\0 dans lui-
méme. Comme P’ est homogéne, ’application ¢:S”-1 — §”-1 donnée par
d(x) = P'(x)/ | P'(x) | est aussi un difféomorphisme local et il suffit de mon-
trer que ¢ est bijective. Or ¢p(S*~1) est ouvert et fermé; donc ¢ est surjective.
Par suite ¢ est un revétement fini de S”~!. Puisque n >3, S”-! est
simplement connexe si bien que ¢ est injective.

Pour vérifier la premicre affirmation, il suffit de remarquer que ’inverse
de P'| (R"\0) se prolonge continliment 8 R*. [

Avant de commencer la preuve du théoréme (3.3), donnons une version du
lemme 8.6 p. 191 de [8] bien adaptée a notre situation.

(4.2) LEMME. Si PeH\") avec m>2 e n=p+q>3 alorsil
existe une fonction de Morse P € C*(R") avec un seul point critique
d’indice p telle que: |x|>1= P(x) = P().

Preuve. Soit ® € CZ(R") tel que o(x) =1 si |x|<1/2, 0(x) = 0 si
4]x|> 1. Pour @ € R"\0, on pose

P(x) = P(x) —ox) (x|ay, xeRn,.
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