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THE CATEGORY OF NILMANIFOLDS

by John OPREA

ABSTRACT. The techniques of rational homotopy theory are used to
compute the category of a nilmanifold: cat(M) = dim M = rank(w;M). This
information is of interest to dynamicists since the theorem of Lusternik-
Schnirelmann then shows that the number of critical points of a smooth
function of M is bounded below by rank(m;M) + 1.

INTRODUCTION

As a first step to understanding the structure of certain dynamical systems
on nilmanifolds, one might hope to have computable lower bounds on the
number of critical points of smooth functions. Of course, one is then led to
the Lusternik-Schnirelmann definition of category and their well-known result
that category (+ 1) is such a bound. Unfortunately, category is rarely
computable, so those who require numerical bounds often employ the fact that
category majorizes cuplength. Hence cuplength (which, generally, is a more
computable homotopy invariant than category) is the numerical invariant
frequently sought for in order to provide a lower bound for the number of
critical points of smooth functions on a manifold.

Indeed, some time ago, for the reasons above, Chris McCord asked me if
I knew of a formula for the cuplength of a nilmanifold. I did not then, and
after many computations I do not now! Thus, I pose:

QUESTION. What is the cuplength (with Q-coefficients say) of a
nilmanifold?

Suprisingly, however, the need for such knowledge by dynamicists is
obviated by the following.
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THEOREM 1. If M is a (compact) nilmanifold, then cat(M)
= dim(M) = rank(nm,M).

Hence, the best possible result which Lusternik-Schnirelmann theory can
provide for nilmanifolds is the immediate.

COROLLARY. The number of critical points of a smooth function on a
(compact) nilmanifold M is bounded below by rank(m,M) + 1.

In fact, Theorem 1 was announced for all K(m, 1)’s by Eilenberg and Ganea
[11]. Unfortunately, details of the proofs of their three fundamental proposi-
tions never appeared, thus contributing, I believe, to the ignorance of the result
among the dynamicists and topologists of today. Indeed, this paper was
originally written in response to Chris McCord’s question and without
knowledge of the Eilenberg-Ganea result. Furthermore, in looking at the
Eilenberg-Ganea propositions, it is difficult to see the relationship between the
structures of m and K(m, 1) and the consequent determination of category as
rank(m). I hope that the approach of this paper will remedy this defect, at least
in the case of nilmanifolds. The beautiful structure theory of nilmanifolds (i.e.
finitely generated torsionfree nilpotent groups) is ideally suited for an
approach in terms of minimal models. In fact, in some sense, this paper is
simply an exposition of just how well rational homotopy theory and
nilmanifold theory fit together (in the representative situation of determining
category).

Theorem 1 will be given a simple (‘‘up to’’ the machinery of rational
homotopy theory) proof in §4. Since this paper is written for workers in
dynamical systems, I have tried to make it somewhat self-contained.
Therefore, §1 and §2 are devoted to recollections on category and its rational
homotopy description respectively. §3 recollects structural knowledge of
nilmanifolds and §5 presents an analogue of Theorem 1 for iterated principal
bundles. (The basic reference for the rational homotopy version of L.S.
category is [3]; I have attempted to cull the essential ingredients for the proof
of Theorem 1, but the reader will find other interesting applications in that
work. Also see [2].)

§1. CATEGORY

The category of a space M, cat(M), is the least integer m so that M is
covered by m + 1 open subsets each of which is contractible within M.

An equivalent definition (at least for the spaces we consider here) was given
by G. Whitehead (see [10]): Let M™+! denote the (m + 1)-fold product and

2
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let 7Tm+ (M) denote the subspace consisting of all (m + 1)-tuples
(x;, " ", Xns+1) With at least one x; equal to a specified basepoint in M.
(T +Y(M) is usually called the ‘“fat wedge’’.) In particular, 7>(M) = M v M,
two copies of M attached at the specified basepoint. Now let A: M — M™+!
denote the (m + 1)-fold diagonal AX =0x " ,X) and
j: Tm+Y(M) — Mm+! the natural inclusion. Whitehead’s definition is then:
cat(M) is the least integer m so that, up to homotopy, A factors through the
fat wedge; that is, there exists A': M — T™+1(M) with j A" = A.

The cuplength of M, cup(M), is the largest integer k so that there exist
x;€e H(M;R), i = 1, - -+, k and a nontrivial cup-product

O¢X1X2"’Xk.
The following result is well-known and is the basis of many calculations of
category:

PROPOSITION. cup(M) < cat(M).

For a proof, see [10] for example. Other important properties of category
are:

(1) Category is an invariant of homotopy type.
(2) If C; =Y u, CX is a mapping cone, then cat(Cy) < cat(Y) + 1.

(3) If X is a CW-complex, then (by induction on skeleta and 2))
cat(X) < dim X.

(4) In fact, (3) may be generalized: If X is (r — 1)-connected, then
cat(X) < (dimX)/r.

The proofs of these properties are straightforward; see [10] for example.
In particular, we shall use (3) in our determination of the category of
nilmanifolds.

Examples
1. cat(X) = 0 if and only if X is contractible.
2. cat(S") = 1.
3. More generally, cat(X) = 1if and only if X is a nontrivial co-H space.

4. cat(T") = n (this follows from the proposition and property 3)
above).

We single out an example of interest in dynamical systems which, although
quite simple, does not seem to be well known among dynamicists. (The
analogue for Kéhler manifolds is well known among topologists.)
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5. If M?" is a simply connected compact symplectic manifold, then
1
cat(M) = n = 7 dim(M). (First, observe that the volume form is not exact

since it represents a nontrivial fundamental class of M. Because ow”/n! = vol
(see [1], p. 165), the nondegenerate closed 2-form ® cannot be exact either.
Hence, " represents a nontrivial cup-product of length » in R-cohomology.
By property (4) above, cat(M) < (dimM)/2 = n. Hence,

1
n < cup(M) < cat(M) < 5 dimM = n
and the result follows.)

§2. RATIONAL HOMOTOPY AND CATEGORY

The basic reference for this section is [3]. To each space X, Sullivan
functorially associated a commutative differential graded algebra (A4 (X), d) of
rational polynomial forms possessing the salient property that integration
'defines a natural algebra isomorphism between H*(A4(X), d) and H*(X; Q).
Furthermore, the cdga A (X) was shown to contain all the rational homotopy
information about X; information which may be gleaned from an associated
cdga minimal model of A(X).

A cdga (A, d) is minimal if (1) A = AX, where X = @;. (X' is a graded
Q-vector space and AX denotes that A is freely generated by X; that is,
AX = Symmetric algebra (X¢°) & Exterior algebra (X°4). (2) There is a
basis for X, {X}qes, so that if I'is well ordered by <, then dxg € A, _g(xs)
- AJ <p(Xo). That is, A is constructed by stages and the differentials of B
stage generators are decomposable in the generators of previous stages.

A minimal model for a space M is a minimal cdga A(M) and a cdga map
A(M) = A(M) inducing an isomorphism in cohomology. The fundamental
theorem of rational homotopy theory is then (see [4] for example).

THEOREM. Each space M has a minimal model A(M) and, further-
more, for nilpotent spaces the stage by stage construction precisely mirrors the
rational Postnikov tower with the differential corresponding to the k-invariant.

Recall that a space M is nilpotent if its fundamental group m;(M) is a
‘nilpotent group and the natural action of m;(M) on n,(M) (see [10]) is a
nilpotent action (see [12]). In particular, any simply connected space or any
K(m, 1) with  nilpotent is a nilpotent space. The theorem then says that, for
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a nilpotent space, the minimal model is a perfect reflection of the rational
homotopy type of the space (eg for i > 1, X' = Hom(n;(M), Q), where
n;(M) is the it homotopy group of M). The minimal model A(M) is
therefore an algebraic version of the Q-localization of M. Indeed, a notion of
cdga homotopy may be described so that there is a categorical equivalence
between the homotopy categories of rational nilpotent spaces and minimal
cdga’s.
Examples. (1) A(S?"*1) = A(Xy,+1),dx = 0.
(2) A(S?") = A(X2n, Yan-1), dy = X°.
(3) A(CP(n) = A(xz,Yan41), dy = x"+1.
4 A(T") = A@xy,x3, - +,x7),d = 0.
In the next setion we will describe the minimal model of a nilmanifold in
terms of the structure of its defining nilpotent group.
In order to understand category in the framework of minimal models,
assume for the moment that cat(M) = m. The Whitehead diagram

M A Mm+1
(*) AT Tj

Tm+1(M)

translates (via Sullivan’s categorical equivalence) into a homotopy
commutative diagram of minimal cdga’s,

AX “« (AX)®m+1
(+%) 0 le

AY

where A(M) = AX, A(M™+') = (AX)®7+! (since the model of a product is
the tensor product of the models), A is modelled by the (m + 1)-fold multiplica-
tion p and AY = A(T"+1(M)).

Now, however, we may make the following

Definition. The rational category of M (or A(M) = AX), caty(M), is
the least m so that (+*) exists; that is, there exists p with pg = .

Observe that: (1) cato(M) < cat(M) since any diagram (*) induces a
diagram (*x). (2) If M is simply connected, then cato(M) = cat(M,), where
M, is the Q-localization of M. This follows since (*) itself localizes.
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The definition of caty(M) would be of little use if this were its only
description. The passage from () to (**) simply transfers the difficult problem
of obtaining A’ to an (almost) equally difficult problem of obtaining p.
 However, by understanding the nature of AY = A(T™*! (M)), a more
accessible criterion for cato(M) may be developed. We first describe AY.

PROPOSITION (2.2 of [3]). A minimal model for the fat wedge is given by
a minimal model ¢: AY — Q for the quotient cdga

Q= (AX)®m+l/(A+X)®m+l

where A*X consists of all elements of positive degree. Moreover, if
n: (AX)®m+1 > Q s the projection, then any mn:(AX)®"+1 > AY with
on = n is homotopic to the induced map E&.

(The existence of 1 is a consequence of the minimality of (AX)®”*1 the
fact that ¢ induces an isomorphism of cohomology and cdga obstruction
theory. See [4] or [6].)

In some sense, the form of Q is exactly what one would expect viewing the
 fat wedge as a spatial bound on the ‘“form product’’ length (as opposed to
cuplength). The proof of the proposition relies on various technical results
involving A(T™+1(M)).

Now let A>™X denote the differential ideal of AX having additive basis
the monomials Xx; ---x;, with k> m. Consider the projection
p: AX - AX/A>"X and a minimal model 6: AZ - AX/A>"X. As before
(for AY), minimal model theory provides a lift of p, p: AX — AZ, with
Op = p.

Say that AX is a retract of AX/A>mX if there exists a cdga map
r: AZ - AX with rp = 1,x.

We are now in a position to give the rational homotopy criterion for
- category. We give a proof in one direction and refer to [3] for the other. (Also,
we make use of the fact that a cohomology isomorphism 6: 4 — B induces
bijections of cdga homotopy sets 0,: [A, A] > [A, B] for any minimal A.)
With the notation above, we have the

THEOREM. cato(M) < m if and only if AX = A(M) is a retract of
AX/A>mX.

Proof. We only prove the ‘‘if”’ part. Let r denote the retraction,
'AZ - AX, with rp = 1,x. We have the following homotopy commutative
' diagram (where p is the map induced by p and p is a lift to models),
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AX -— (AX)®m+.1

Ip In

~ AX 5 (AX)®mH!

P\ aox T aaxen | °
=18 =T1¢
ANZ :LL AY

In order to prove caty(M) < m, we must find p: AY - AX with p§ = p. We
can use the given retraction to do exactly this. Let p = ru.

First, observe Opp = pu = pun = pdpf = 0u&. Because 0 is a cohomology
isomorphism, pu = pk.

Now, p& = rué = rpp = 1axp = p and we are done. [

Of course, cato(M) is, in general, too hard to compute. However, the
criterion we have described opens up the possibility of defining weaker
invariants which are computable. In a sense, the point of this paper is to give
an exposition of these weaker invariants in the context of a specific problem
of interest to ‘‘geometers’’.

Define ey(M) to be the least integer s so that p: AX - AX/A>sX
induces an injection in cohomology. (This is, in fact, equivalent to requiring
r: AZ - AX to be only a linear retraction. The invariant e,(M) was first
defined by Toomer [9] in terms of the Milnor-Moore spectral sequence.)

Note that if r; AZ = AX is a retraction, then p* is injective and (since 0*
i1s an isomorphism) therefore so is p*. Hence, we clearly have

eo(M) < cato(M) .

Moreover, when M is a nilpotent space (so that the full power of the minimal
model may be utilized) and a manifold (so that Poincaré duality may be
exploited), we can identify e,(M) in the following manner:

PROPOSITION. If M" is a nilpotent manifold with fundamental class

T e H'(M;Q), then ey(M) is the largest k such that 7t is represented
by a cocycle in A>*X.

Proof. Let eo(M) = s and let k be defined by the stated property. If 7 is
represented by a cocycle in A>sX, then (for p: AX = AX/A>sX)p*(t) = 0
and p* is therefore not injective. Hence, k < s.
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: In order to show the reverse inequality s < k, we must show that, for
p:AX > AX/A>*¥X, p* is injective. Plainly, by Poincaré duality, p* is
-injective if and only if p*(t) # 0. Hence, we prove this.

Suppose p*(t) = 0. Let T denote the representing cocycle in A >4X of the
' fundamental class 1. Let p(t) = T € AX/A>*X and consider T as an element
in A<tX. Now, p*(t) = 0, so there exists o € AX/A>*X with dao = 1.
Consider a € A<4X as well and note that p(da) = da = 7. Therefore, in
AX

dao =1+ ®, where ® e A>kX .
Similarly, of course, T = T + Q for Q € A>*X and we obtain,
T=1T+Q=da—-®+Q

with Q — ® € A>*X. But this means T is cohomologous to Q — ® € A>kX,
contradicting the definition of k. [

§3. NILMANIFOLDS

A nilmanifold M is the quotient of a nilpotent Lie group N by a discrete
cocompact subgroup ©. The description below follows [7].
It is well known that N is diffeomorphic to some R” and, therefore, M is
a K(m,1). Furthermore, this entails the fact that m is a finitely generated
torsionfree nilpotent group.
| On the algebraic side, there is a refinement of the upper central series of T,

M2M2M32 " 2N, 21

with each n;/m;,, = Z whose length is invariant and is called the rank of
1. So, for m above, rank(n) = n.

‘ This description implies that any we€emn has a decomposition
u=uy" - ur, where {u,) = n,, - {u;) = n;/m;,. The set {uy, - u,}
is called a Malcev basis for m. Using this basis the multiplication in 7 takes

' the form

u)lcl .. u)’;nu)l’l e ui’ln — unln(x,y) uﬁn(x’-}’)

where

P, y) =X+ yi + 0, Xim, V1, Vi) -
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Example. N = U,(R), the group of upper diagonal matrices with 1’s on
the diagonal; © = U,(Z). A Malcev basis is given by {uy; |11 < < j < n}
where Uj; = I+ €ij and

pii(x, y) = xij + yi + Y X -

i<k<j

Consider the central extension 1, = n — m. The cocycle for the extension is
1,: T X Tt = Z. Of course T is also finitely generated torsionfree with refined
upper central series,

- L Tt Ty—1 Ut
T = — e D

|
|

V)

U

Hence, rank(n) = n — 1 and

pix, ) = pi{(%,0), (,0) = x; +yi + Ti(X1, " Xic1, V1, " Vie1)

for i < n. Clearly, then, we may iterate this process and decompose 7 as n
central extensions of the form

Z-G—G

with cocycles 1, € H 2((_Fr; Z) (with untwisted coefficients since the extension is
central).

This desription allows a geometric formulation:

1, € HX(n; Z) = H*(K(n, 1); Z) = [K(w, 1), K(Z, 2)]

by the usual identification of cohomology groups with sets of homotopy classes
into K(Z, m)’s. Now, K(Z,2) = CP(), the classifying space for principal
Sl-bundles, so 1, induces a bundle over K(m, 1),

St - K(m,1)
l

K@@, 1) 3 CP(w).

The total space of the bundle is clearly K(m, 1) since the ensuing short exact
sequence of fundamental groups is classified by 1,.

Now, because we can iterate the algebraic decomposition of n, we obtain
an iterated sequence of principal S!'-bundles classifed by the 7;:
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2
l
<
I

K(m, 1)

Sl - Mn—l - CP(OO)

Sl - M1 - CP(OO)

* 3 CP(w).

We can assume (by finite dimensionality) that each t; has image in a finite
CP(n), so thus may be approximated by a smooth map. Hence, each M, is a
compact manifold with

dim(M;) = dim(M;_,) + 1.
- Thus, dim(M) = rank(w) = n.

§4. CATEGORY OF NILMANIFOLDS

The decomposition of M = K(m, 1) into a tower of principal S!-bundles
is, in fact, the Postnikov decomposition of M with k-invariants the t;. By the
fundamental theorem of rational homotopy theory, the minimal model has the
form,

AM) = (A(xy, " " X,),d),  deg(x) =1

with dx; = t;, where 1; is a cocycle representing the class t; € H*(M;_,; Z).
Note that A(M) is an exterior algebra because all generators are in degree 1.
Therefore, since dim M = n, the only possibility for a cocycle representing the
fundamental class is x; - x,. Hence, e,(M) = n and this immediately
implies,

Proof of Theorem 1. n = ey)(M) < cato(M) < cat(M) < dimM = n. [

‘ Example. Consider the 3-dimensional Heisenberg group U;(R) and mod
out by Us;(Z). The resulting M is a 3-manifold obtained as a principal bundle,

St > M- T?
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with classifying element (over the rationals) xy € H 2(T?; Q), where x and y
are one-dimensional generators. The minimal model of M is then given by

AM) = A(x, y,z) deg(x) = deg(y) = deg(z) = 1
with dx = 0 = dy and dz = xy. Additive generators for cohomology are then,
H':x,y
H?: xz, yz (Massey products!)
H3:zyx .
Note that cup(M) = 2, but cat(M) = 3.
In some sense then, the proof of Theorem 1 is simply an observation that

the techniques of rational homotopy theory work particularly well for
nilmanifolds.

PROBLEM. If = is not nilpotent, then a K(m, 1) is not a nilpotent space,
so the minimal model does not describe a ‘‘rational type’’. Is it possible,
however, that enough information about a K(x, 1) is present in the model to
determine its category (in the compact case say)?

§5. HIGHER DEGREE ANALOGUES

An analogue of the minimal model of a nilmanifold is one of the form,
(A(xy, * - x,),d), degree(x;) = odd .

Such an algebra is known to satisfy rational Poincaré duality (see [5]) and to
have formal top dimension Zideg(xi). But, plainly, the same argument as
before applies to show that the ‘‘only’’ element in this exterior algebra which
can reach the stated dimension is x; - - - x,,. Hence (since this is the longest

product in A), the fundamental class is maximally represented by a product
of length n and

LEMMA. ¢ey(A) = n.

Now, we may consider A as built up by adjoining odd generators one at
a time (with decomposable differential). Let AZ be a minimal cdga and y of
odd degree. Then

PROPOSITION. (See Theorem 4.7 and Lemma 6.6 of [3].)

catog(AZ ® Ay) < catg(AZ) + 1.
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Proof. Suppose cato(AZ) = m. Then AZ is a retract of AZ/A>"Z and
'we see that AZ @ Ay is a retract of AZ/A>"Z ® Ay. Now, the maximal
‘product length of AZ/A>"Z @ Ay is m + 1 and this is sufficient to ensure
catf(AZQAy) <m+ 1. [

Now, by induction, we see that caty(A) < # (since for x; of odd degree
cato(Ax;) = 1). Putting this together with the Lemma gives

THEOREM 2. If A = (A(x, - x,),d) with deg(x;)) = odd for
each i, then caty(A) = n.

This result may be applied, for example, to a manifold obtained as an
iterated principal bundle. That is, for compact Lie groups G;,i = 1 to N.

I M, = Gy; M; is obtained from M;_; as a principal G;-bundle over M;_;.
M = MN

Each G, is, rationally, a product of rank(G;) odd spheres, so the minimal
' model of M has the form,

AM) = (MG, - x),d)
with deg(x;) = odd and s = YN, rank(G)).

COROLLARY. catg(M) = Ef\’: , Tank (G;).

COROLLARY. If M is an iterated principal bundle with fibres G,
' then the number of critical points of any smooth function on M is bounded
“below by Y, rank(G;) + 1.

‘ Note that we have not determined cat(M), so the true effectiveness of
Lusternik-Schnirelmann theory may not have been exploited.

§6. GANEA’S CONJECTURE

The Ganea Conjecture states that, for a finite CW complex X,
cat(X X Sk) = cat(X) + 1 for any sphere S¥. Although unproven in general,
évarious cases of the conjecture have been shown to be true. We add
'nilmanifolds to that list:

THEOREM. Ganea’s Conjecture is true for nilmanifolds.
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Proof. Let M be a nilmanifold. Then

dimM + 1 = ee(M) + 1
= eo(M x S*) since e, respects products
< cat(M x S%)
< cat(M) + 1 Fox’s inequality
=dmM+ 1.
Hence all inequalities are equalities and cat (M x S*) = cat(M) + 1. L]

ADDED IN PROOF. By using the equality ey(M) = dim (M) and extending
the e;-invariant to maps, C. McCord and the author have given a proof of
the Arnold Conjecture for nilmanifolds (cf. C. McCord and J. Opera, Rational
Ljusternik-Schnirelmann Category and the Arnold Conjecture for
Nilmanifolds, preprint 1992). That is, any smooth 1-periodic Hamiltonian
system on a symplectic nilmanifold M has at least dim (M) + 1 contractible
1-periodic orbits.
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