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220 H.-M. MAIRE

h= (P”"(xX)h l h) est constant pour x € R”\0, car n > 2. Pour 0 <p
<netqg=n-—p, soit

Hﬁ,’f’; ={Pe H™ |ind P"(x) = p, ¥vx # 0} .
On a bien sir: H{” = U, _H" .

Quand m = 2, I'ensemble H'”, s’identifie & I’ensemble des formes qua-
dratiques non dégénérées d’indice p sur R”. Mais si m est supérieur a 2, il
n’est pas immeédiat de trouver un polyndme homogéne de degré m satisfaisant
a (1), avec hessien indéfini. Les polynOmes harmoniques sont de bons
candidats si n est égal a 2 (cf. Exemple (2.1)), mais pas en dimension
supérieure. En effet, H. Lewy [6], puis B. Segre [9] et V.E. Galafassi [4] ont
montré qu’il n’existe pas de polyndme harmonique dans H™ si m > 2 et

n
n>2.
Dans cet article, nous répondons aux questions suivantes:

Pour quelles valeurs de m,p et q, I’ensemble H.") est-il non vide?

Pour P dans Hgf’()l, quel est le nombre de composantes connexes de
P-1(0)\{0}?

Quels sont les nombres de Betti des variétés de niveaux de P:{P=a},
respectivement des variétés de sous-niveaux de P:{P < a}?

L’étude de Hgf’()l est motivée par les résultats de Helffer-Nourrigat et de
Pauteur sur I’hypoellipticité maximale du systéme de Cauchy-Riemann induit
sur une hypersurface de C”*1!, cf. [5] et [7]. 1l est facile de vérifier que si
PeHz(,'f'; et p,q *+Jj alors I’hypersurface tubulaire de C”*! définie par
Rezy = P(Rez, ..., Rez,) satisfait la condition de Derridj D(j) qui est
nécessaire pour I’hypoellipticité maximale de 8, sur les (0, j)-formes. La
connectivité des sous-niveaux de P est utile pour montrer que D(j) est aussi
suffisante.

Le plan de Particle est le suivant. Au paragraphe 2, une liste d’exemples
ou contre-exemples simples illustre les différents cas exceptionnels: n = 2,
p =0oum =4 et génériques: m > 6. Les résultats principaux sont énoncés

au paragraphe 3 et démontrés au paragraphe 4.

2. EXEMPLES ET CAS PARTICULIERS

(2.1) EXEMPLE. Pour m =2 le polynobme P(x,y) = Re(x+iy)”
appartient @ H{™

Preuve. Si f:C — C est une fonction holomorphe, les équations de
‘Cauchy-Riemann donnent
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0 d 0 d
—Resze—j—r, ——Ref=—Im—J:,
dx dz oy dz
0 d ) d
——Imlem—]:, —Imf = Re—I
ox dz oy dz
et, par suite,
de 2
det Re f)' = — | —— .
et (Re f) 72

Quand f(z) = z™, le déterminant hessien de Re f est donc négatif, sauf en

z=0. [

(2.2) EXEMPLE. P() = (¥} + ... + x3)%, pour k=1, appartient a
@0
O,n
Preuve. Par calcul direct, on trouve que P”(x) vaut 2k | x |*~* fois

Qk—1)x>+x:+ -+ +xi 2k — 2)x1x,
2k — 2)x1 X, X+ Qk-DX3+ X3+ -+ x)

Six=(,0,...,0), cette matrice est diagonale de valeurs propres 2k (2k — 1),
2k, ...,2k. Comme P est invariant par toute transformation orthogonale et
comme

3) Ue GL(n,R) = U'P"(Ux)U=PoU)'(x), VxeR",
les valeurs propres de P’'(x) sont

2kk — 1) | x|26-2, 2k | x |2k-2, .., 2k | x|*-2 . O

(2.3) LEMME. Pour m impair supérieur @ 2, on a:
H{y = Hylo = &
Preuve. Soit P un polyndme homogeéne de degré m et dénotons par
a € S! (sphére unité de R?) un point ou P atteint son maximum sur S!. La

méthode des multiplicateurs de Lagrange et la relation d’Euler montrent que
P’(a) = mP(a)a. Une seconde application de la relation d’Euler donne

P’(@)a=m—-1)P'(a) = m(m - 1)P(a)a .

Ainsi a est vecteur propre de P’’(a) avec valeur propre m(m — 1) P(a). Si P

appartient a H (2”’3 alors cette valeur propre est négative et, par suite, P(a) est

négatif. Il s’ensuit que P est négatif en dehors de 0, donc m est pair. [
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(2.4) PROPOSITION (A. Andreatta [1]). Si k>1 e n2>=3, alors
H(2k+1) — @

Preuve. Si P est un polyndme homogéne de degré impair alors P’ est une
application homogéne de degré pair; elle est donc non injective. D’apres la
proposition (4.1), il s’ensuit que P & Hﬁfk“). O]

(2.5) EXEMPLE. L’ensemble HS’, ne contient pas de polyndme du type
suivant:
2.2
Z ajkxjxk .
1<j<k<4
Preuve. Soit P un polyndme de ce type appartenant & H'Y. Alors P"(x)
a pour matrice

12, X% + 2a1,X5 + 2ay3x% + 2ay,x2 - A4a,4%, X4

4a14x1x4 ce 23.14)(:;’ + 2024.7(% + 23,34.X§ + 12044Xi

Quand x; = 0, le déterminant de P”(x) est un multiple de Q(x;, X2, X3)
= 2a14xf + 2a24x§ + 2a34x§; d’apres (1), la forme quadratique Q doit €tre
définie et donc a;4, a4 €t a3, ont le méme signe. D’autre part, pour x; = x;
=x3=0 et x4 =1, les valeurs propres de P’ (x) sont 2a;4,2a4,2as, et
12a44. Donc l’indice de P"(0,0,0, 1) est différent de 2 et, par suite, le
polynéme P n’appartient pas a Hy,. [J

Remarque. 1l est facile de trouver des polyndmes homogenes de degré pair
dont la matrice hessienne a p valeurs propres < 0 et g valeurs propres > 0.
En effet, P(x) = — x1“ — ... = x.* + x5 | + ... + x2 pour k entier > 1
convient. Mais dés que k est supérieur a 1, P ¢ ka). Une légére modi-

fication de cet exemple fournit un élément de H'®.

(2.6) EXEMPLE (A. Andreatta [2]). Le polynéme
Py= (X +x2—x2) @]+ x5+ x3) + A+ x5 —x5)

appartient a H (16’)2 pour A = 2.

Preuve. Soit Q = P,. On a
o= 90x?t + 12x2x% + 2x5 — 12x7x5 + 2x3,
o= 2xt 4 12x3x2 + 90x; — 12x5x3 + 2x3,
rr 4 4 2.2 2.2 4

144 144

3 3 3 3 3
;,2 = SX:I'XZ + 8X1X2 ’ 13 = — 8x1x3 + 8x1x3 s 23 — — 8x2x:; + 8x2x3 .




POLYNOMES HOMOGENES REELS 223

Comme 8x2(x? + x%) < O}, et 8x5(x] + x3) < Q33, on a

17\ 2 rr rr 2,2 2 2 r 2
(l@%(x%+x§)Q23 < 0110557 et (l/gxz(x1+xz)Q13) < Ui

D’aprés ’inégalité 2ab < a? + b2, il en découle
200, 01 O3 < 011 03" + 0% 015 -
D’autre part, on vérifie que
> 54xt 4 2x5 + x5, 1> 20t 4+ 54x5 + x5,
NS — Xt — x5 — 18x3,
et, par conséquent,
(0% - O >xi+ xS+
En regroupant ces informations, on obtient
det Q" < (Q Q3 — 015 Q35 < — (f + x5 + x3) (¢} + X + 18x3)

<0, si x#0.
Pour A > 2, on a, avec u = 30(A — 2).

rr 4_ 4 _4 4 _4 144 4 4 1 4 _4
det P, = — n3x x;x; + w2(x)x;033 — X1X307, — X,Xx;01]
4 rr 17 2 4 17 7 2 4 ’ rr rr2
+ n(x](055 05— 035) + x,(011 033 — O13) — x3(Q1192 — Q12 )
+ det Q" .

Comme tous les coefficients de ce polyndme en p sont négatifs ou nuls, le
déterminant de P, est négatif pour A > 2 et x # 0. Il reste a observer que
P;’ (0,0, 1) = diag(2,2, —30(A + 1)) pour pouvoir conclure que P, appar-

tient 3 H%,. [
L’exemple générique suivant est plus facile a calculer.
(2.7) EXEMPLE. Pour tout k >2 et quels que soient n>=p >0, le
polynome
P(X) = — (4 o + X5+ e+ .+ XK+ L+ XD)
— 8O+ X)) O XD (L L xR
appartient & H@**? si €>0 est assez petit.

Preuve. Puisque P est invariant par toute transformation linéaire qui

conserve (x}+ ... +x2) et (x,,, + ... +x2), daprés (3), il suffit de vérifier
que

det P” (x,,0,...,0,x,) #0 pour (x;,x,) # (0,0) .

Mais quand x = (x;,0,...,0, x,) les seules entrées non nulles de P’’ sont
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Pl = — 2k +2) Qk + D)xi* + 2ek 2k — 1)x**72x% — 2ex?

P}y = ...=Py,= —2(k+ Dx7* + 2ekx* "2x2 — 2ex?*
Py it = oo = Pyoy oy = 28x* — 28k X2 7% 4 2(k + 1)x2*-

P = 2ext* — 2ek 2k — 1)x3x2 72 + 2k + 2) Qk + 1)x2*

Pl =P = dek (X x, — xx2F7Y |
Par conséquent, en (x;,0, ..., 0, x,,),

det P = (P11 Py, — (P1)?) Py Py oy

Pour ¢ assez petit on vérifie que Py}, ..., P, sont négatifset P," , ., ..., P,
sont positifs pour (x;,0,...,0,x,) # (0, ...,0) (cette affirmation est fausse
pour k =1, puisque dans ce cas P}, = — 12x> s’annule pour x # 0). Il

s’ensuit que P’’ a p valeurs propres négatives et ¢ valeurs propres positives si
x+0. [

3. ENONCES DES RESULTATS

(3.1) THEOREME. Supposons m,n>=>2, p=0,...,.n, q=n—p. Alors
l’ensemble H Z g st non vide si, et seulement si [’'une des conditions
suivantes a lieu:

a) m estimpairet p=gq=1;
b) m=2;
c) m=4 et p=q=1 ou p=0 ou q=0;

d) m est pair supérieur ou égal a 6.

(3.2) APPLICATION. Pour m pair =26,n>2 et p=0,...,n, il existe
une hypersurface réguliere M de classe C> de R"+*! contenant 0 telle
que la courbure de Gauss-Kronecker K(x) de M en x vérifie

G K@) ~|x|"m-2 | x—0.

(1) L’hypersurface M a p rayons de courbure principaux négatifs et
q rayons de courbure principaux positifs en tout point voisin de 0.

Il n’existe pas d’hypersurface avec ces propriétés si m=4 et p+0
el n.

(3.3) THEOREME. Soit PeHY) avec m>2 e n=p+q>3.
Alors les variétés de niveaux [resp. de sous-niveaux] de P ont les mémes
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