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h I-» < P"{x)h | h > est constant pour xeR"\0, car 2. Pour O^p
^ n et q n - p, soit

={PeH[m) I ind PVx*0}
On a bien sûr: H(nm) U ;

Quand m2, l'ensemble H(p'q s'identifie à l'ensemble des formes qua-

dratiques non dégénérées d'indice p sur Rn. Mais si m est supérieur à 2, il
n'est pas immédiat de trouver un polynôme homogène de degré m satisfaisant
à (1), avec hessien indéfini. Les polynômes harmoniques sont de bons

candidats si n est égal à 2 (cf. Exemple (2.1)), mais pas en dimension

supérieure. En effet, H. Lewy [6], puis B. Segre [9] et V.E. Galafassi [4] ont
montré qu'il n'existe pas de polynôme harmonique dans si m > 2 et

n > 2.

Dans cet article, nous répondons aux questions suivantes:

Pour quelles valeurs de m, p et q, l'ensemble est-il non vide?

Pour P dans H^q, quel est le nombre de composantes connexes de

P"1(0)\{0}?
Quels sont les nombres de Betti des variétés de niveaux de P:{P= a},
respectivement des variétés de sous-niveaux de P: {P ^ a}?

L'étude de H^q est motivée par les résultats de Helffer-Nourrigat et de

l'auteur sur l'hypoellipticité maximale du système de Cauchy-Riemann induit
sur une hypersurface de Cn + l, cf. [5] et [7]. Il est facile de vérifier que si

P e H{1 et p,q^j alors l'hypersurface tubulaire de Cn + l définie par
Rezo P(Rezi, Rez,î) satisfait la condition de Derridj D{j) qui est

nécessaire pour l'hypoellipticité maximale de db sur les (0,y)-formes. La
connectivité des sous-niveaux de P est utile pour montrer que D(j) est aussi

suffisante.
Le plan de l'article est le suivant. Au paragraphe 2, une liste d'exemples

ou contre-exemples simples illustre les différents cas exceptionnels: n 2,

p 0 ou m 4 et génériques: m ^ 6. Les résultats principaux sont énoncés

au paragraphe 3 et démontrés au paragraphe 4.

2. Exemples et cas particuliers

(2.1) Exemple. Pour m > 2 le polynôme P(x9y) Re(x + i»m
appartient à H\m]

Preuve. Si / : C - C est une fonction holomorphe, les équations de

Cauchy-Riemann donnent
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df
dz

et, par suite,

det (Re/)
d2 f 2

dz2

Quand f(z) le déterminant hessien de Re / est donc négatif, sauf en

z 0.

(2.2) Exemple. P(x) (x\ + + x2n)k, pour k ^ 1, appartient à

Preuve. Par calcul direct, on trouve que P"(x) vaut 2k\x\2k 4 fois

Si y (1, 0, 0), cette matrice est diagonale de valeurs propres 2k(2k - 1),

2k, ...,2k. Comme P est invariant par toute transformation orthogonale et

comme

(3) U e GL(n, R) => É/'P"(l/x)l/ (P o C/)"(x) VxeR",
les valeurs propres de P"(x) sont

2k(2k - 1) |x|2*-2,2Â:|x|2/:-2, 2k | x\2k~2

(2.3) Lemme. Pour m impair supérieur à 2, on a:

Preuve. Soit P un polynôme homogène de degré m et dénotons par
fleS1 (sphère unité de R2) un point où P atteint son maximum sur S1. La
méthode des multiplicateurs de Lagrange et la relation d'Euler montrent que

P'(a) mP(a)a. Une seconde application de la relation d'Euler donne

Ainsi a est vecteur propre de P"(a) avec valeur propre m (m — 1 )P(a). Si P
appartient à alors cette valeur propre est négative et, par suite, P(a) est

négatif. Il s'ensuit que P est négatif en dehors de 0, donc m est pair.

{2k-\)x\ +x\+ + x\
(2k - 2)xiX2x\+ (2k - X)x\ + x] +

H[ml » H^l 0.

P"(a)a (m - 1 )P'(a) m (m - 1 )P(a)a
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(2.4) Proposition (A. Andreatta [1]). Si k ^ 1 et n ^ 3, alors

//f+i) 0.
Preuve. Si P est un polynôme homogène de degré impair alors P' est une

application homogène de degré pair; elle est donc non injective. D'après la

proposition (4.1), il s'ensuit que P $ H{2k+l).

(2.5) Exemple. L'ensemble H2\ ne contient pas de polynôme du type
suivant:

2 2

L aJkXjXk
1 ^ j < k ^ 4

Preuve. Soit P un polynôme de ce type appartenant à Alors P"(x)
a pour matrice

(12tfu#i
+ 2ÛT12*2 + 2^3X3 + 2tfi4*J • 4auxxxA \

4a14X\X4 • • • Iblux] + 2^4X2 + 2a34*3 + 12044X4 /

Quand x4 0, le déterminant de P"(x) est un multiple de Q(x1,x2ix3)
: 2a\4x\ + 2024X2 + ^034X3; d'après (1), la forme quadratique Q doit être

définie et donc 0H, a2A et 034 ont le même signe. D'autre part, pour X\ x2

x3 0 et x4 1, les valeurs propres de P"{x) sont 2014 2024 2034 et

12044. Donc l'indice de P"(0, 0, 0, 1) est différent de 2 et, par suite, le

polynôme P n'appartient pas à

Remarque. Il est facile de trouver des polynômes homogènes de degré pair
dont la matrice hessienne a p valeurs propres ^ 0 et q valeurs propres ^ 0.

En effet, P(x) - x2k - - x2k T- x2k+l + + x2k pour k entier ^ 1

convient. Mais dès que k est supérieur à 1, P $ H(2k). Une légère
modification de cet exemple fournit un élément de H\6^2.

(2.6) Exemple (A. Andreatta [2]). Le polynôme

Px (x2i+x22- x]){x\ + x+x43) + +x62- x\)

appartient à Z/'/'l pour 'K ^ 2.

Preuve. Soit Q P2. On a

Q\\ 90x\+ \2x\x\+ 2x\ - \2x\x] + 2x\,

Q'{2 2x\ + 12X1X2 + 90X2 - 12x2X3 + 2x3,

Q33 - 2x\ - 2x\ + \2x\x\+ 12x2X3 - 9OX3,

Q'l2 8x^X2 + 8x1X2 Q['} - 8X1X3 + 8x1X3 Ô23 - 8X2X3 + 8x2X3
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Comme 8x,(x, + x\) ^ Q[\et &x\(x\ + x\) < Q"2, on a

(i/8*î(*î + q2'3)2 ^ Ô;; G«2 et (/sx^ + x^ei'j)2 ^ Ô2'2Ô;'32 •

D'après l'inégalité 2ab < a2 + ô2, il en découle

2ßl2 Ôl3 Ô23 ^ Qll Ô23 + Ô22 Ôl3 *

D'autre part, on vérifie que

Qu ^ 54x{ + 2x\ + x\ » Ô22 ^ ^1 ^4x2 ^3 >

Q33 < - *î " *2 - 1^3 »

et, par conséquent,

q'Ù022- Q;'22 » *î + *5 + *3 •

En regroupant ces informations, on obtient

det Q" ^ (.QuQii- Qui Q'ù < - (*î + + *S) (xi + x2+ 18x3>

< 0 si x =£ 0

Pour X ^ 2, on a, avec p 30(À, - 2).

detP" - p3x^x* + \X2(xUtQ^- 44Qn-44Qn)
+ H(*Î(Ô£ Q« - Ô232) + 4(Qn Ô33 - Qn2) - ^3(ÔnÔ22 " Qu))

+ det Q"
Comme tous les coefficients de ce polynôme en p sont négatifs ou nuls, le

déterminant de P" est négatif pour X ^ 2 et x 0. Il reste à observer que

P[' (0, 0, 1) diag(2, 2, -30(X + 1)) pour pouvoir conclure que Px appartient

à H\6 2.

L'exemple générique suivant est plus facile à calculer.

(2.7) Exemple. Pour tout k ^ 2 et quels que soient n ^ p ^ 0, /e

polynôme

P(x)- (** + +Xp)Ä:+1 + E(x^ + +Xp)A:(X^ + 1 + ...+x^)

- s(^ + +x^) (Xp+1 + + **)* + (x£+1 +

appartient à Hfkq+2) si s > 0 est assez petit.

Preuve. Puisque P est invariant par toute transformation linéaire qui
conserve (x\+ + x2p) et (x* + 1 + + x2n), d'après (3), il suffit de vérifier
que

det P" (xi, 0, 0, xn) =é 0 pour (xi,x„) ^ (0, 0)

Mais quand x (x^O, ...,0, xn) les seules entrées non nulles de P" sont
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P'n - (2k + 2) (2k + \)x\k+ 2--
P'2'2 -Ppp - 2(*+ l)xf + - 2zxf

^pH- l,p+ 1 ••• =-fn-l,n-l 2zx2k— + 2(ât + l)xf
P'„'n 2zxjk- 2zk(2k-X)x\x2k~2 + (2Ar + 2) (2/t + l)xf
p"n pn14eAr(xf ~'x„ -x,xf-1)

Par conséquent, en 0, 0, x„),

detP" (PnPZt-iPD^Pm-Pn-un-i •

Pour s assez petit on vérifie que P[\,Ppp sont négatifs et Pp+hp+ j,P"n
sont positifs pour (xi, 0,0, x„) ^ (0,0) (cette affirmation est fausse

pour k= 1, puisque dans ce cas - 12x^ s'annule pour x ^ 0). II
s'ensuit que P" a p valeurs propres négatives et q valeurs propres positives si

x * 0.

3. Enoncés des résultats

(3.1) Théorème. Supposons m, n ^ 2, p 0,..., n, q n - p. Alors
l'ensemble Hp q

est non vide si, et seulement si l'une des conditions
suivantes a lieu:

a) m est impair et p q 1 ;

b) m 2;

c) m 4 et p q — 1 ou p 0 ou q 0;

d) m est pair supérieur ou égal à 6.

(3.2) Application. Pour m pair ^6, n^2 et p 0,...,n, il existe

une hypersurface régulière M de classe C°° de R" + 1 contenant 0 telle

que la courbure de Gauss-Kronecker K(x) de M en x vérifie

(i) K(x)~ |xb-2) x^0.
(ii) L'hypersurface Map rayons de courbure principaux négatifs et

q rayons de courbure principaux positifs en tout point voisin de 0.

Il n'existe pas d'hypersurface avec ces propriétés si m — 4 et p ^ 0

et n.

(3.3) Théorème. Soit P e H{p^q avec m ^ 2 et n p + q ^ 3.

Alors les variétés de niveaux [resp. de sous-niveaux] de P ont les mêmes
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