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POLYNOMES HOMOGENES REELS
AVEC GRADIENT A SINGULARITE ISOLEE

par H.-M. MAIRE

RESUME. Les niveaux et sous-niveaux d’un polyndme réel homogene de
degré m > 2 avec gradient a singularité isolée en O (i.e., avec hessien non
dégénéré) ont la méme homologie que les niveaux et sous-niveaux d’une forme
quadratique non dégénérée. L’existence de tels polyndmes pour m pair > 6
avec hessien d’indice quelconque est établie. On montre par contre que le
hessien de tout polyndme homogeéne de degré 4 en au moins 3 variables dont
I’indice est différent de 0 et #» en un point, dégénére en dehors de ’origine.

1. INTRODUCTION

Pour deux entiers m, n > 2, soit H ﬁ,’") I’ensemble des polyndmes réels P
a n variables, homogenes de degré m dont le gradient P': R” = R” a une
singularité isolée en 0, en d’autres termes, tels que la matrice hessienne

P

X
ijﬁxk( )) 1<j,k<n

PG = (

est non dégénérée pour tout x € R"\ 0, c’est-a-dire

(1) xeR", detP"(x) =0 = x=0.

Si P appartient & H,,", la relation d’Euler P”(x)x = (m — 1)P’(x) donne
(2) xeR", PPx)=0 = x=0,

donc P a aussi une singularité isolée en 0. De plus, I’indice de Morse

ind P”(x) (= nombre de valeurs propres négatives) de la forme quadratique

Mots-clés: fonction de Morse — hessien — singularités isolées.
Classification AMS: 14G30 - 57R.
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h= (P”"(xX)h l h) est constant pour x € R”\0, car n > 2. Pour 0 <p
<netqg=n-—p, soit

Hﬁ,’f’; ={Pe H™ |ind P"(x) = p, ¥vx # 0} .
On a bien sir: H{” = U, _H" .

Quand m = 2, I'ensemble H'”, s’identifie & I’ensemble des formes qua-
dratiques non dégénérées d’indice p sur R”. Mais si m est supérieur a 2, il
n’est pas immeédiat de trouver un polyndme homogéne de degré m satisfaisant
a (1), avec hessien indéfini. Les polynOmes harmoniques sont de bons
candidats si n est égal a 2 (cf. Exemple (2.1)), mais pas en dimension
supérieure. En effet, H. Lewy [6], puis B. Segre [9] et V.E. Galafassi [4] ont
montré qu’il n’existe pas de polyndme harmonique dans H™ si m > 2 et

n
n>2.
Dans cet article, nous répondons aux questions suivantes:

Pour quelles valeurs de m,p et q, I’ensemble H.") est-il non vide?

Pour P dans Hgf’()l, quel est le nombre de composantes connexes de
P-1(0)\{0}?

Quels sont les nombres de Betti des variétés de niveaux de P:{P=a},
respectivement des variétés de sous-niveaux de P:{P < a}?

L’étude de Hgf’()l est motivée par les résultats de Helffer-Nourrigat et de
Pauteur sur I’hypoellipticité maximale du systéme de Cauchy-Riemann induit
sur une hypersurface de C”*1!, cf. [5] et [7]. 1l est facile de vérifier que si
PeHz(,'f'; et p,q *+Jj alors I’hypersurface tubulaire de C”*! définie par
Rezy = P(Rez, ..., Rez,) satisfait la condition de Derridj D(j) qui est
nécessaire pour I’hypoellipticité maximale de 8, sur les (0, j)-formes. La
connectivité des sous-niveaux de P est utile pour montrer que D(j) est aussi
suffisante.

Le plan de Particle est le suivant. Au paragraphe 2, une liste d’exemples
ou contre-exemples simples illustre les différents cas exceptionnels: n = 2,
p =0oum =4 et génériques: m > 6. Les résultats principaux sont énoncés

au paragraphe 3 et démontrés au paragraphe 4.

2. EXEMPLES ET CAS PARTICULIERS

(2.1) EXEMPLE. Pour m =2 le polynobme P(x,y) = Re(x+iy)”
appartient @ H{™

Preuve. Si f:C — C est une fonction holomorphe, les équations de
‘Cauchy-Riemann donnent
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