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POLYNÔMES HOMOGÈNES RÉELS

AVEC GRADIENT À SINGULARITÉ ISOLÉE

par H.-M. Maire

Résumé. Les niveaux et sous-niveaux d'un polynôme réel homogène de

degré m ^ 2 avec gradient à singularité isolée en 0 (i.e., avec hessien non
dégénéré) ont la même homologie que les niveaux et sous-niveaux d'une forme
quadratique non dégénérée. L'existence de tels polynômes pour m pair ^ 6

avec hessien d'indice quelconque est établie. On montre par contre que le

hessien de tout polynôme homogène de degré 4 en au moins 3 variables dont
l'indice est différent de 0 et n en un point, dégénère en dehors de l'origine.

1. Introduction

Pour deux entiers ra, « ^ 2, soit H(nm) l'ensemble des polynômes réels P
à n variables, homogènes de degré m dont le gradient P': R" - R" a une
singularité isolée en 0, en d'autres termes, tels que la matrice hessienne

/ 9 2P \
p"w= (x)

\OXjOXk Jl^j,k^n
est non dégénérée pour tout x e R"\0, c'est-à-dire

(1) xeR", detP"(x) 0 => x 0.
Si Pappartient à la relation d'Euler P"(x)x (m - ï)P'(x) donne

(2) xeR", P'(x) 0 =>

donc Pa aussi une singularité isolée en 0. De plus, l'indice de Morse
ind P"(x) nombre de valeurs propres négatives) de la forme quadratique

Mots-clés: fonction de Morse — hessien — singularités isolées.
Classification AMS: 14G30 - 57R.
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h I-» < P"{x)h | h > est constant pour xeR"\0, car 2. Pour O^p
^ n et q n - p, soit

={PeH[m) I ind PVx*0}
On a bien sûr: H(nm) U ;

Quand m2, l'ensemble H(p'q s'identifie à l'ensemble des formes qua-

dratiques non dégénérées d'indice p sur Rn. Mais si m est supérieur à 2, il
n'est pas immédiat de trouver un polynôme homogène de degré m satisfaisant
à (1), avec hessien indéfini. Les polynômes harmoniques sont de bons

candidats si n est égal à 2 (cf. Exemple (2.1)), mais pas en dimension

supérieure. En effet, H. Lewy [6], puis B. Segre [9] et V.E. Galafassi [4] ont
montré qu'il n'existe pas de polynôme harmonique dans si m > 2 et

n > 2.

Dans cet article, nous répondons aux questions suivantes:

Pour quelles valeurs de m, p et q, l'ensemble est-il non vide?

Pour P dans H^q, quel est le nombre de composantes connexes de

P"1(0)\{0}?
Quels sont les nombres de Betti des variétés de niveaux de P:{P= a},
respectivement des variétés de sous-niveaux de P: {P ^ a}?

L'étude de H^q est motivée par les résultats de Helffer-Nourrigat et de

l'auteur sur l'hypoellipticité maximale du système de Cauchy-Riemann induit
sur une hypersurface de Cn + l, cf. [5] et [7]. Il est facile de vérifier que si

P e H{1 et p,q^j alors l'hypersurface tubulaire de Cn + l définie par
Rezo P(Rezi, Rez,î) satisfait la condition de Derridj D{j) qui est

nécessaire pour l'hypoellipticité maximale de db sur les (0,y)-formes. La
connectivité des sous-niveaux de P est utile pour montrer que D(j) est aussi

suffisante.
Le plan de l'article est le suivant. Au paragraphe 2, une liste d'exemples

ou contre-exemples simples illustre les différents cas exceptionnels: n 2,

p 0 ou m 4 et génériques: m ^ 6. Les résultats principaux sont énoncés

au paragraphe 3 et démontrés au paragraphe 4.

2. Exemples et cas particuliers

(2.1) Exemple. Pour m > 2 le polynôme P(x9y) Re(x + i»m
appartient à H\m]

Preuve. Si / : C - C est une fonction holomorphe, les équations de

Cauchy-Riemann donnent
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