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L'Enseignement Mathématique, t. 38 (1992), p. 219-232

POLYNÔMES HOMOGÈNES RÉELS

AVEC GRADIENT À SINGULARITÉ ISOLÉE

par H.-M. Maire

Résumé. Les niveaux et sous-niveaux d'un polynôme réel homogène de

degré m ^ 2 avec gradient à singularité isolée en 0 (i.e., avec hessien non
dégénéré) ont la même homologie que les niveaux et sous-niveaux d'une forme
quadratique non dégénérée. L'existence de tels polynômes pour m pair ^ 6

avec hessien d'indice quelconque est établie. On montre par contre que le

hessien de tout polynôme homogène de degré 4 en au moins 3 variables dont
l'indice est différent de 0 et n en un point, dégénère en dehors de l'origine.

1. Introduction

Pour deux entiers ra, « ^ 2, soit H(nm) l'ensemble des polynômes réels P
à n variables, homogènes de degré m dont le gradient P': R" - R" a une
singularité isolée en 0, en d'autres termes, tels que la matrice hessienne

/ 9 2P \
p"w= (x)

\OXjOXk Jl^j,k^n
est non dégénérée pour tout x e R"\0, c'est-à-dire

(1) xeR", detP"(x) 0 => x 0.
Si Pappartient à la relation d'Euler P"(x)x (m - ï)P'(x) donne

(2) xeR", P'(x) 0 =>

donc Pa aussi une singularité isolée en 0. De plus, l'indice de Morse
ind P"(x) nombre de valeurs propres négatives) de la forme quadratique

Mots-clés: fonction de Morse — hessien — singularités isolées.
Classification AMS: 14G30 - 57R.
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h I-» < P"{x)h | h > est constant pour xeR"\0, car 2. Pour O^p
^ n et q n - p, soit

={PeH[m) I ind PVx*0}
On a bien sûr: H(nm) U ;

Quand m2, l'ensemble H(p'q s'identifie à l'ensemble des formes qua-

dratiques non dégénérées d'indice p sur Rn. Mais si m est supérieur à 2, il
n'est pas immédiat de trouver un polynôme homogène de degré m satisfaisant
à (1), avec hessien indéfini. Les polynômes harmoniques sont de bons

candidats si n est égal à 2 (cf. Exemple (2.1)), mais pas en dimension

supérieure. En effet, H. Lewy [6], puis B. Segre [9] et V.E. Galafassi [4] ont
montré qu'il n'existe pas de polynôme harmonique dans si m > 2 et

n > 2.

Dans cet article, nous répondons aux questions suivantes:

Pour quelles valeurs de m, p et q, l'ensemble est-il non vide?

Pour P dans H^q, quel est le nombre de composantes connexes de

P"1(0)\{0}?
Quels sont les nombres de Betti des variétés de niveaux de P:{P= a},
respectivement des variétés de sous-niveaux de P: {P ^ a}?

L'étude de H^q est motivée par les résultats de Helffer-Nourrigat et de

l'auteur sur l'hypoellipticité maximale du système de Cauchy-Riemann induit
sur une hypersurface de Cn + l, cf. [5] et [7]. Il est facile de vérifier que si

P e H{1 et p,q^j alors l'hypersurface tubulaire de Cn + l définie par
Rezo P(Rezi, Rez,î) satisfait la condition de Derridj D{j) qui est

nécessaire pour l'hypoellipticité maximale de db sur les (0,y)-formes. La
connectivité des sous-niveaux de P est utile pour montrer que D(j) est aussi

suffisante.
Le plan de l'article est le suivant. Au paragraphe 2, une liste d'exemples

ou contre-exemples simples illustre les différents cas exceptionnels: n 2,

p 0 ou m 4 et génériques: m ^ 6. Les résultats principaux sont énoncés

au paragraphe 3 et démontrés au paragraphe 4.

2. Exemples et cas particuliers

(2.1) Exemple. Pour m > 2 le polynôme P(x9y) Re(x + i»m
appartient à H\m]

Preuve. Si / : C - C est une fonction holomorphe, les équations de

Cauchy-Riemann donnent
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df
dz

et, par suite,

det (Re/)
d2 f 2

dz2

Quand f(z) le déterminant hessien de Re / est donc négatif, sauf en

z 0.

(2.2) Exemple. P(x) (x\ + + x2n)k, pour k ^ 1, appartient à

Preuve. Par calcul direct, on trouve que P"(x) vaut 2k\x\2k 4 fois

Si y (1, 0, 0), cette matrice est diagonale de valeurs propres 2k(2k - 1),

2k, ...,2k. Comme P est invariant par toute transformation orthogonale et

comme

(3) U e GL(n, R) => É/'P"(l/x)l/ (P o C/)"(x) VxeR",
les valeurs propres de P"(x) sont

2k(2k - 1) |x|2*-2,2Â:|x|2/:-2, 2k | x\2k~2

(2.3) Lemme. Pour m impair supérieur à 2, on a:

Preuve. Soit P un polynôme homogène de degré m et dénotons par
fleS1 (sphère unité de R2) un point où P atteint son maximum sur S1. La
méthode des multiplicateurs de Lagrange et la relation d'Euler montrent que

P'(a) mP(a)a. Une seconde application de la relation d'Euler donne

Ainsi a est vecteur propre de P"(a) avec valeur propre m (m — 1 )P(a). Si P
appartient à alors cette valeur propre est négative et, par suite, P(a) est

négatif. Il s'ensuit que P est négatif en dehors de 0, donc m est pair.

{2k-\)x\ +x\+ + x\
(2k - 2)xiX2x\+ (2k - X)x\ + x] +

H[ml » H^l 0.

P"(a)a (m - 1 )P'(a) m (m - 1 )P(a)a
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(2.4) Proposition (A. Andreatta [1]). Si k ^ 1 et n ^ 3, alors

//f+i) 0.
Preuve. Si P est un polynôme homogène de degré impair alors P' est une

application homogène de degré pair; elle est donc non injective. D'après la

proposition (4.1), il s'ensuit que P $ H{2k+l).

(2.5) Exemple. L'ensemble H2\ ne contient pas de polynôme du type
suivant:

2 2

L aJkXjXk
1 ^ j < k ^ 4

Preuve. Soit P un polynôme de ce type appartenant à Alors P"(x)
a pour matrice

(12tfu#i
+ 2ÛT12*2 + 2^3X3 + 2tfi4*J • 4auxxxA \

4a14X\X4 • • • Iblux] + 2^4X2 + 2a34*3 + 12044X4 /

Quand x4 0, le déterminant de P"(x) est un multiple de Q(x1,x2ix3)
: 2a\4x\ + 2024X2 + ^034X3; d'après (1), la forme quadratique Q doit être

définie et donc 0H, a2A et 034 ont le même signe. D'autre part, pour X\ x2

x3 0 et x4 1, les valeurs propres de P"{x) sont 2014 2024 2034 et

12044. Donc l'indice de P"(0, 0, 0, 1) est différent de 2 et, par suite, le

polynôme P n'appartient pas à

Remarque. Il est facile de trouver des polynômes homogènes de degré pair
dont la matrice hessienne a p valeurs propres ^ 0 et q valeurs propres ^ 0.

En effet, P(x) - x2k - - x2k T- x2k+l + + x2k pour k entier ^ 1

convient. Mais dès que k est supérieur à 1, P $ H(2k). Une légère
modification de cet exemple fournit un élément de H\6^2.

(2.6) Exemple (A. Andreatta [2]). Le polynôme

Px (x2i+x22- x]){x\ + x+x43) + +x62- x\)

appartient à Z/'/'l pour 'K ^ 2.

Preuve. Soit Q P2. On a

Q\\ 90x\+ \2x\x\+ 2x\ - \2x\x] + 2x\,

Q'{2 2x\ + 12X1X2 + 90X2 - 12x2X3 + 2x3,

Q33 - 2x\ - 2x\ + \2x\x\+ 12x2X3 - 9OX3,

Q'l2 8x^X2 + 8x1X2 Q['} - 8X1X3 + 8x1X3 Ô23 - 8X2X3 + 8x2X3
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Comme 8x,(x, + x\) ^ Q[\et &x\(x\ + x\) < Q"2, on a

(i/8*î(*î + q2'3)2 ^ Ô;; G«2 et (/sx^ + x^ei'j)2 ^ Ô2'2Ô;'32 •

D'après l'inégalité 2ab < a2 + ô2, il en découle

2ßl2 Ôl3 Ô23 ^ Qll Ô23 + Ô22 Ôl3 *

D'autre part, on vérifie que

Qu ^ 54x{ + 2x\ + x\ » Ô22 ^ ^1 ^4x2 ^3 >

Q33 < - *î " *2 - 1^3 »

et, par conséquent,

q'Ù022- Q;'22 » *î + *5 + *3 •

En regroupant ces informations, on obtient

det Q" ^ (.QuQii- Qui Q'ù < - (*î + + *S) (xi + x2+ 18x3>

< 0 si x =£ 0

Pour X ^ 2, on a, avec p 30(À, - 2).

detP" - p3x^x* + \X2(xUtQ^- 44Qn-44Qn)
+ H(*Î(Ô£ Q« - Ô232) + 4(Qn Ô33 - Qn2) - ^3(ÔnÔ22 " Qu))

+ det Q"
Comme tous les coefficients de ce polynôme en p sont négatifs ou nuls, le

déterminant de P" est négatif pour X ^ 2 et x 0. Il reste à observer que

P[' (0, 0, 1) diag(2, 2, -30(X + 1)) pour pouvoir conclure que Px appartient

à H\6 2.

L'exemple générique suivant est plus facile à calculer.

(2.7) Exemple. Pour tout k ^ 2 et quels que soient n ^ p ^ 0, /e

polynôme

P(x)- (** + +Xp)Ä:+1 + E(x^ + +Xp)A:(X^ + 1 + ...+x^)

- s(^ + +x^) (Xp+1 + + **)* + (x£+1 +

appartient à Hfkq+2) si s > 0 est assez petit.

Preuve. Puisque P est invariant par toute transformation linéaire qui
conserve (x\+ + x2p) et (x* + 1 + + x2n), d'après (3), il suffit de vérifier
que

det P" (xi, 0, 0, xn) =é 0 pour (xi,x„) ^ (0, 0)

Mais quand x (x^O, ...,0, xn) les seules entrées non nulles de P" sont
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P'n - (2k + 2) (2k + \)x\k+ 2--
P'2'2 -Ppp - 2(*+ l)xf + - 2zxf

^pH- l,p+ 1 ••• =-fn-l,n-l 2zx2k— + 2(ât + l)xf
P'„'n 2zxjk- 2zk(2k-X)x\x2k~2 + (2Ar + 2) (2/t + l)xf
p"n pn14eAr(xf ~'x„ -x,xf-1)

Par conséquent, en 0, 0, x„),

detP" (PnPZt-iPD^Pm-Pn-un-i •

Pour s assez petit on vérifie que P[\,Ppp sont négatifs et Pp+hp+ j,P"n
sont positifs pour (xi, 0,0, x„) ^ (0,0) (cette affirmation est fausse

pour k= 1, puisque dans ce cas - 12x^ s'annule pour x ^ 0). II
s'ensuit que P" a p valeurs propres négatives et q valeurs propres positives si

x * 0.

3. Enoncés des résultats

(3.1) Théorème. Supposons m, n ^ 2, p 0,..., n, q n - p. Alors
l'ensemble Hp q

est non vide si, et seulement si l'une des conditions
suivantes a lieu:

a) m est impair et p q 1 ;

b) m 2;

c) m 4 et p q — 1 ou p 0 ou q 0;

d) m est pair supérieur ou égal à 6.

(3.2) Application. Pour m pair ^6, n^2 et p 0,...,n, il existe

une hypersurface régulière M de classe C°° de R" + 1 contenant 0 telle

que la courbure de Gauss-Kronecker K(x) de M en x vérifie

(i) K(x)~ |xb-2) x^0.
(ii) L'hypersurface Map rayons de courbure principaux négatifs et

q rayons de courbure principaux positifs en tout point voisin de 0.

Il n'existe pas d'hypersurface avec ces propriétés si m — 4 et p ^ 0

et n.

(3.3) Théorème. Soit P e H{p^q avec m ^ 2 et n p + q ^ 3.

Alors les variétés de niveaux [resp. de sous-niveaux] de P ont les mêmes
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nombres de Betti que les variétés de niveaux [resp. de sous-niveaux] de la forme
2 2 2 2

quadratique - xx... - xp + xp+l... + xn.

Remarque. La condition n p + q ^ 3 est essentielle dans le théorème

(3.3). En effet, dans l'exemple (2.1), le sous-niveau {P<0} a m

composantes connexes.

(3.4) Corollaire. Si P appartient à avec n ^ 3 et m ^ 2,

alors l'ensemble défini par P 0 dans l'espace projectif réel est connexe.

4. Preuves

En dimension supérieure à 2, la proposition-clé suivante impose de sérieuses

restrictions sur les polynômes de H^q. On va l'utiliser à plusieurs reprises

dans la suite.

(4.1) Proposition. Si P e H{nm) avec n^ 3, alors l'application
P':Rn Rn est un homéomorphisme et sa restriction à R*\0 est un

difféomorphisme.

Preuve. Commençons par la deuxième affirmation. Soit P e H
d'après (2), l'application P': R* R" envoie Rn\0 dans lui-même. L'hypothèse

(1) garantit que P' est un difféomorphisme local de R*\0 dans lui-
même. Comme Pr est homogène, l'application 0:S*~1->S'7~1 donnée par
0(x) P'ix)/ | P'{x) | est aussi un difféomorphisme local et il suffit de montrer

que 0 est bijective. Or 0(S"_1) est ouvert et fermé; donc 0 est surjective.
Par suite 0 est un revêtement fini de S*-1. Puisque n ^ 3, S"-1 est

simplement connexe si bien que 0 est injective.
Pour vérifier la première affirmation, il suffit de remarquer que l'inverse

de P' | (R"\0) se prolonge continûment à R*.

Avant de commencer la preuve du théorème (3.3), donnons une version du
lemme 8.6 p. 191 de [8] bien adaptée à notre situation.

(4.2) Lemme. Si P e H{]q avec m^l et n p + q ^ 3 alors il
existe une fonction de Morse P e C°°(R") avec un seul point critique
d'indice p telle que: | x | ^ 1 => P(x) P(x).

Preuve. Soit co e C^R") tel que co(x) 1 si | * | < 1/2, co(x) 0 si
| x | ^ 1. Pour a e R"\0, on pose

P (x) P(x) - co(x) < x | a > xeR".
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En dérivant, il vient

P'(x) P'(x) - co'(*) {x | a> - co(x)a

et donc

| P'ipc) | ^ | P'(x) | - | cû'(x) I x II a | — | co(x) Il a |.

Pour | a | assez petit, il en résulte que

inf | P'(x) | ^ 1/2 inf | P'(x) | > 0
1/2 < ^ 1 1/2 ^ |*| ^ 1

Quand \x \ ^ 1/2, on a par construction P'{x) P'{x) - a. Le seul point
critique de P est donc b (P')~x(a). Quitte à prendre | a | encore plus petit,
on peut supposer | b | < 1/2, si bien que P"(b) P"{b). L'indice de Morse
de P en b vaut donc p.

Preuve du théorème (3.3). Les conditions de Palais-Smale (cf. [8] p. 179)

sont satisfaites pour les fonctions P et P du lemme (4.2) puisque

inf | P'(x) | inf | P'(x) | > 0
M^ i \x\> i

Pour a g R, notons

Pa {x g R" | P(x) ^ a} Pa {x g R" | P(x) < a}

les variétés de sous-niveaux de P et P de hauteur a. Posons

a0 sup|xki(|P(x) | + \P(x) I)

Puisque P a un seul point critique d'indice p situé dans {| x | < 1}, on a

(cf. [8] p. 188).

dimHk{Pa,P~a) bkp k=0,...,n, a ^ a0

où Hk désigne le £-ième groupe d'homologie à coefficients réels de la paire et

\bktP est le symbole de Kronecker. Mais, pour a ^ a0, Pa Pa et Pa
P ~ a. Donc

dim Hk(Pa, P~a) bk>p, k 0, n, a ^ a0

En utilisant maintenant les lemmes 8.3 p. 181 et 8.4 p. 183 de [8], on obtient

que Pa est rétracte fort par déformation de R", pour a ^ 0, et P~a est

rétracte fort par déformation de P°\0, pour a > 0. D'où, pour k 0, n:

dimHk(P«) dimHk(P°) 8kt0, a ^ 0

(4) dimHk(P~a) dimHk(P°\0), a>0,
| dim Hk(P°, P°\0) 6k,p



POLYNÔMES HOMOGÈNES RÉELS 227

La suite exacte longue d'homologie de la paire (P°,P°\0) s écrit

0 -» Hn(P°\0)- Hn(P°) -» H„(P°,-* i/„-i(P° \ o) -»

^ ff1(P°\0) H,(P°) ^ Hi(P°,P°\0) ->

-» H0(P°\0) - tf0(P°) - #o(P°, P°\0) 0

Lorsque p0, elle se réduit à

0 - H„(P°\0) -» 0 -> -»• 0 -> H0(P°\0) - R > R 0

si bien que dim Hk (P° \ 0) 0, Vk. Pour 1, elle se réduit à

->0->//i(P°\0)->0->R->//o(.P0\0)->'R->0

D'où dimH0(P°\0) 2 et dimif*(P°\0) 0 si 0. Pour 1, on

trouve dim/f*(P°\0) 0 si k* p- 1 ou 0, 1 sinon. En résumé,

0 si 0
dim/p(P°\0) {

ßk.p-1 + S*, o si 0

Pour la forme quadratique d'indice de Morse p, les relations (4) ont aussi lieu.

D'où le résultat sur les variétés de sous-niveaux.

Les nombres de Betti des variétés de niveaux de P peuvent être calculés avec

la suite de Mayer-Vietoris. En effet, les relations

p->(a) P° n (-P)_a et R" P" u (-P)~a, aeR,
donnent des suites exactes

0 - Hk(P ~1 (a)) Hk(Pa) © Hk{{ - P)«) - 0, pour k 0

0 -> H0(P-'(a))H0(Pa) © if0((- P)-°) R -> 0

Donc

dim//i(P"'(a)) dimÄit(P«) + dim//*.((-P) a), pour k 0

dim//o(P-'(a)) dim/f0(Pa) + dim/f0((- P)_a) - 1

Ces relations ont aussi lieu pour la forme quadratique d'indice p, d'où le

résultat sur les niveaux de P.

(4.3) Remarque. La preuve ci-dessus montre que les conclusions du

théorème (3.3) ont lieu lorsque P est une fonction de Morse sur R" ayant un
seul point critique d'indice p et satisfaisant les conditions de Palais-Smale.

Preuve du corollaire (3.4). Remarquons d'abord que F: P_1(0)
n S" -1 est une sous-variété lisse de dimension n - 2 de S"-1 puisque si x° est
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un point critique de P | S*-1, alors P'(x°) Xx°, avec X & 0 d'après (2),
donc P(x°) ^ 0 par Euler. De plus, l'intersection de V avec tout hémisphère
ouvert est dense dans l'intersection de V avec l'adhérence de cet hémisphère.
En effet, dans le cas contraire, V aurait une composante V\ contenue dans un
équateur de S"-1; pour raison de dimension, Vx serait égal à cet équateur et

ceci est absurde car P ne peut s'annuler identiquement sur un hyperplan
vectoriel. Le corollaire sera donc démontré si on vérifie que l'intersection de

V avec un hémisphère ouvert est connexe.
Si p n, un argument semblable à celui de la démonstration du

lemme (2.3) montre que sup(x|= \P(x) < 0. Donc V est vide.
Si p est compris entre 2 et n — 1, soit aeS"-1 tel que

sup|x(= iP(x) P(a). Comme au lemme (3.2), il vient que a est un vecteur

propre de P"(à) avec valeur propre positive. Puisque P' est bijective, la fonction

P | {a + aL) a un unique point critique en a; c'est donc une fonction de

Morse avec un seul point critique d'indice p et qui satisfait les conditions de

Palais-Smale. La remarque (4.3) s'applique et donne que P-1(0) n (a + a^)
est connexe {p > 1). Sa projection sur S"-1 est l'intersection de V avec un
hémisphère ouvert. Le corollaire est donc démontré dans ce cas.

Si p 1 ou 0, on raisonne avec - P.

(4.4) Proposition. Si P e et g ^ 1, alors il existe un (p + q - 1)-

plan vectoriel n tel que P | n e H{^q _ l.
Preuve. Si p 0, il n'y a rien à démontrer, car la restriction d'une forme

quadratique définie positive à un hyperplan est définie positive.

Supposons dorénavant p ^ 1. Pour tout p-plan vectoriel o de R" et x e g,
soit Xp(x, g) la plus grande valeur propre de P"{x) | g. Supposons que

(5) inf sup Xp(x, g) ^ 0
c 6 G(n,p) x | 1, x e a

où G(n,p) est la grassmannienne des p-plans vectoriels de R". Soient g0 et

x° e g0 des éléments qui réalisent le membre de gauche de (5). Comme

P"(x°) a au moins une valeur propre négative, il existe des p-plans o arbitrairement

voisins de o° tels que Xp(x°, o) < Xp(x°, g0). La relation (5) n'a donc

pas lieu et il existe un p-plan g tel que Xp(x, o) < 0 si | x | 1 et x e g.
Soit n un hyperplan de R" qui contient g. Puisque les valeurs propres de

P"(x) 17i et P"{x) | g sont entrelacées (cf. [3] p. 149), P"(x) | n a au moins

p valeurs propres négatives pour x e tc\0; de même, en comparant P"(x) et

P"(x) 17i, on obtient que P"(x) | n a au moins q - 1 valeurs propres positives.

Donc P 17C
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Preuve du Théorème (3.1).

a) Si est non vide, alors la proposition (2.4) entraîne n 2.

D'après le lemme (2.3), il faut que p q 1.

L'exemple (2.1) démontre l'implication en sens inverse.

b) Ce cas est trivial.

c) Compte tenu des exemples (2.1), (2.2) et de la proposition (4.4), on

peut supposer q 1 et n > 2. On procède par l'absurde en supposant qu'il
existe P e u l. Soient

Xi(x) > 0 > ^ ••• ^ K(x) x g Rw\0

les valeurs propres de P"(x). Pour a ^ 0, on définit

Paix)P(X) - a(+ + x2„)2

D'après les inégalités de Weyl (cf. [3] p. 157), les valeurs propres XaJ de

(Pa)" satisfont

Xj(x) - 4a \x\2 ^ XaJ(x) ^ Xj(x) - 12a |x|2 1 ^ n

Il existe donc a > 0 et a e R" tels que

(6) ^a,i ^ 0 > Xa>2 ^ ^ Xa>n et Xa i(a) 0

Le polynôme Pa est noté Q dorénavant. Deux cas peuvent se présenter.

1) Q"(a)a 0.

Par un changement linéaire de coordonnées, on se ramène à a (0,..., 0,1).
L'hypothèse donne Q'/n(a) 0 pour 1 <y ^ n, si bien que

Q(x)A(x') + B(x')x„ + C(x'),x' (x,,,
où A [resp. B] est homogène de degré 4 [resp. 3] et C est une forme quadratique
définie négative.

Le polynôme Qe(x) Q(x) + e(x2+ + x2)2 appartient à H(„4±ut, pour
e > 0 assez petit (inégalités de Weyl) et on a

0E(x) As(x')+ B(x')x„+ Cs(x')x2 + sx*

avec As homogène de degré 4 et Ce uniformément définie négative. Pour
r\ /-j

x' 6 R—»,|x'| 1, l'équation —(x',x„) 0 admet 3 solutions réelles
9x„

distinctes si s est assez petit car s'annule en x*= ±}/— Ce(x')/6s
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9ße _
a qe

et (x',xn > 0, (x',x„ < 0. Soient yX(x') < y2(x') < y3(x') ces
dxn dxn

solutions; l'application

Sn~2->Sn~2

X' ^ (Öe)'(x',j>i (*'))/I (ß8)'(x',*(*')) |

est continue injective. Son degré topologique vaut donc ± 1 et par suite, elle

est aussi surjective. Il en est de même pour y\(x') remplacé par y2(xf). On a

donc obtenu une contradiction avec l'injectivité de (QE)'.

2) Q"(à)b 0 pour a, b e R" linéairement indépendants.

Par un changement linéaire de coordonnées, on peut supposer
a (0, 0, 1) et b (1, 0, 0). L'hypothèse donne Q['j{à) 0, pour
1 ^j^n. Puisque la matrice {Q'/k{ä))2 <jik ^ n a toutes ses valeurs propres
négatives, on peut supposer, après multiplication de Q par un scalaire positif
que Q'n'n{a) - 12. Il existe un dernier changement linéaire de coordonnées

x Ux de la forme X\ xx, Xj
1

ujkXk,xn xn + £2
1

ukXk, tel que

Q(x) ' Q(Ux) satisfait Q"(a) diag(0, -2, -2, -12). En laissant

tomber les tildes, on est arrivé à la forme suivante:

Q(x)A(x') + B(x')xn + C(x")x2n x' (x,,

x"(x2,.Développons det Q"(x', 1) près de x0:

tB[\(x') 0 0 \
detQ"(x', 1) det I 0 C" 0 + <9(|x'|2), x* -+ 0

\ 0 0 -12/

Puisque det g" ne change pas de signe d'après (6), il faut que B[\ soit
identiquement nul. Les relations d'Euler 6£y'(1, 0, 0) Bj[\(\, 0, 0) pour
1 < j ^ n - 1 montrent que

(7) £(1,0, ...,0) £y'(l,0, ...,0) 0 1 ^ n - 1

Comme

Maintenant,
Comme plus haut, pour s > 0, soit QE(x) Q(x) + &(x2x + + x2n)2.

Q&(x) Ae(x') + B(x')xn + Ce(x')x2 - (1 - s)x4„

avec CE(x') 2zx\ - (1 - 2s) (x\ + + x2n_x). En particulier et d'après (7)
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- (1,0,0, x„)—? (1,0,0) +
dx, dx,

— (l,0,...,0,x„) — (l,0,...,0), 1

dxj dxj

— (1,0,0, x„)4ex„ - 4(1 - s)x3„
dx„

Par suite,

(ß,)'(l,0,...,0, -(/e/(l -e)) (ÔE)'(1,0,...,0, +1/8/(1 -£))

On est de nouveau en contradiction avec l'injectivité de (QE)'.

d) L'exemple (2.7) montre que H^mq est non vide pour m pair supérieur

ou égal à 6.

Preuve de l'application (3.2). Il suffit de prendre P e H{q et M de

la forme

{(x,P(x))|xeR«}
En effet, la courbure de Gauss-Kronecker est un multiple positif du
déterminant hessien de P (cf. [10], p. 93).

Réciproquement, si M est une hypersurface régulière de R" + 1 avec (i) et

(ii), alors M est localement le graphe de /: U -> R avec U ouvert de R"
contenant 0. On peut supposer /(0) 0 et / '(0) 0 sans changer la courbure.
Développons / en parties homogènes:

f(x) P(x) + 0(|xp + 1) x-+ 0

où P est un polynôme homogène de degré j ^ 2. On a:

K{{x,fix)) Ä(x)detP"(jc) + 0(\x\»ü-D)

avec h(0) > 0. La condition (i) entraîney m et detP"(x) ^ 0 pour x 0 (on
a utilisé | (x, /(x))| - | x |). Donc P e H(nm) et (ii) donne P e H(pm)q. D'après
le théorème (3.1), ceci n'est pas possible si m 4 et p ^ 0 et n.
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