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POLYNOMES HOMOGENES REELS
AVEC GRADIENT A SINGULARITE ISOLEE

par H.-M. MAIRE

RESUME. Les niveaux et sous-niveaux d’un polyndme réel homogene de
degré m > 2 avec gradient a singularité isolée en O (i.e., avec hessien non
dégénéré) ont la méme homologie que les niveaux et sous-niveaux d’une forme
quadratique non dégénérée. L’existence de tels polyndmes pour m pair > 6
avec hessien d’indice quelconque est établie. On montre par contre que le
hessien de tout polyndme homogeéne de degré 4 en au moins 3 variables dont
I’indice est différent de 0 et #» en un point, dégénére en dehors de ’origine.

1. INTRODUCTION

Pour deux entiers m, n > 2, soit H ﬁ,’") I’ensemble des polyndmes réels P
a n variables, homogenes de degré m dont le gradient P': R” = R” a une
singularité isolée en 0, en d’autres termes, tels que la matrice hessienne

P

X
ijﬁxk( )) 1<j,k<n

PG = (

est non dégénérée pour tout x € R"\ 0, c’est-a-dire

(1) xeR", detP"(x) =0 = x=0.

Si P appartient & H,,", la relation d’Euler P”(x)x = (m — 1)P’(x) donne
(2) xeR", PPx)=0 = x=0,

donc P a aussi une singularité isolée en 0. De plus, I’indice de Morse

ind P”(x) (= nombre de valeurs propres négatives) de la forme quadratique

Mots-clés: fonction de Morse — hessien — singularités isolées.
Classification AMS: 14G30 - 57R.
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h= (P”"(xX)h l h) est constant pour x € R”\0, car n > 2. Pour 0 <p
<netqg=n-—p, soit

Hﬁ,’f’; ={Pe H™ |ind P"(x) = p, ¥vx # 0} .
On a bien sir: H{” = U, _H" .

Quand m = 2, I'ensemble H'”, s’identifie & I’ensemble des formes qua-
dratiques non dégénérées d’indice p sur R”. Mais si m est supérieur a 2, il
n’est pas immeédiat de trouver un polyndme homogéne de degré m satisfaisant
a (1), avec hessien indéfini. Les polynOmes harmoniques sont de bons
candidats si n est égal a 2 (cf. Exemple (2.1)), mais pas en dimension
supérieure. En effet, H. Lewy [6], puis B. Segre [9] et V.E. Galafassi [4] ont
montré qu’il n’existe pas de polyndme harmonique dans H™ si m > 2 et

n
n>2.
Dans cet article, nous répondons aux questions suivantes:

Pour quelles valeurs de m,p et q, I’ensemble H.") est-il non vide?

Pour P dans Hgf’()l, quel est le nombre de composantes connexes de
P-1(0)\{0}?

Quels sont les nombres de Betti des variétés de niveaux de P:{P=a},
respectivement des variétés de sous-niveaux de P:{P < a}?

L’étude de Hgf’()l est motivée par les résultats de Helffer-Nourrigat et de
Pauteur sur I’hypoellipticité maximale du systéme de Cauchy-Riemann induit
sur une hypersurface de C”*1!, cf. [5] et [7]. 1l est facile de vérifier que si
PeHz(,'f'; et p,q *+Jj alors I’hypersurface tubulaire de C”*! définie par
Rezy = P(Rez, ..., Rez,) satisfait la condition de Derridj D(j) qui est
nécessaire pour I’hypoellipticité maximale de 8, sur les (0, j)-formes. La
connectivité des sous-niveaux de P est utile pour montrer que D(j) est aussi
suffisante.

Le plan de Particle est le suivant. Au paragraphe 2, une liste d’exemples
ou contre-exemples simples illustre les différents cas exceptionnels: n = 2,
p =0oum =4 et génériques: m > 6. Les résultats principaux sont énoncés

au paragraphe 3 et démontrés au paragraphe 4.

2. EXEMPLES ET CAS PARTICULIERS

(2.1) EXEMPLE. Pour m =2 le polynobme P(x,y) = Re(x+iy)”
appartient @ H{™

Preuve. Si f:C — C est une fonction holomorphe, les équations de
‘Cauchy-Riemann donnent
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0 d 0 d
—Resze—j—r, ——Ref=—Im—J:,
dx dz oy dz
0 d ) d
——Imlem—]:, —Imf = Re—I
ox dz oy dz
et, par suite,
de 2
det Re f)' = — | —— .
et (Re f) 72

Quand f(z) = z™, le déterminant hessien de Re f est donc négatif, sauf en

z=0. [

(2.2) EXEMPLE. P() = (¥} + ... + x3)%, pour k=1, appartient a
@0
O,n
Preuve. Par calcul direct, on trouve que P”(x) vaut 2k | x |*~* fois

Qk—1)x>+x:+ -+ +xi 2k — 2)x1x,
2k — 2)x1 X, X+ Qk-DX3+ X3+ -+ x)

Six=(,0,...,0), cette matrice est diagonale de valeurs propres 2k (2k — 1),
2k, ...,2k. Comme P est invariant par toute transformation orthogonale et
comme

3) Ue GL(n,R) = U'P"(Ux)U=PoU)'(x), VxeR",
les valeurs propres de P’'(x) sont

2kk — 1) | x|26-2, 2k | x |2k-2, .., 2k | x|*-2 . O

(2.3) LEMME. Pour m impair supérieur @ 2, on a:
H{y = Hylo = &
Preuve. Soit P un polyndme homogeéne de degré m et dénotons par
a € S! (sphére unité de R?) un point ou P atteint son maximum sur S!. La

méthode des multiplicateurs de Lagrange et la relation d’Euler montrent que
P’(a) = mP(a)a. Une seconde application de la relation d’Euler donne

P’(@)a=m—-1)P'(a) = m(m - 1)P(a)a .

Ainsi a est vecteur propre de P’’(a) avec valeur propre m(m — 1) P(a). Si P

appartient a H (2”’3 alors cette valeur propre est négative et, par suite, P(a) est

négatif. Il s’ensuit que P est négatif en dehors de 0, donc m est pair. [
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(2.4) PROPOSITION (A. Andreatta [1]). Si k>1 e n2>=3, alors
H(2k+1) — @

Preuve. Si P est un polyndme homogéne de degré impair alors P’ est une
application homogéne de degré pair; elle est donc non injective. D’apres la
proposition (4.1), il s’ensuit que P & Hﬁfk“). O]

(2.5) EXEMPLE. L’ensemble HS’, ne contient pas de polyndme du type
suivant:
2.2
Z ajkxjxk .
1<j<k<4
Preuve. Soit P un polyndme de ce type appartenant & H'Y. Alors P"(x)
a pour matrice

12, X% + 2a1,X5 + 2ay3x% + 2ay,x2 - A4a,4%, X4

4a14x1x4 ce 23.14)(:;’ + 2024.7(% + 23,34.X§ + 12044Xi

Quand x; = 0, le déterminant de P”(x) est un multiple de Q(x;, X2, X3)
= 2a14xf + 2a24x§ + 2a34x§; d’apres (1), la forme quadratique Q doit €tre
définie et donc a;4, a4 €t a3, ont le méme signe. D’autre part, pour x; = x;
=x3=0 et x4 =1, les valeurs propres de P’ (x) sont 2a;4,2a4,2as, et
12a44. Donc l’indice de P"(0,0,0, 1) est différent de 2 et, par suite, le
polynéme P n’appartient pas a Hy,. [J

Remarque. 1l est facile de trouver des polyndmes homogenes de degré pair
dont la matrice hessienne a p valeurs propres < 0 et g valeurs propres > 0.
En effet, P(x) = — x1“ — ... = x.* + x5 | + ... + x2 pour k entier > 1
convient. Mais dés que k est supérieur a 1, P ¢ ka). Une légére modi-

fication de cet exemple fournit un élément de H'®.

(2.6) EXEMPLE (A. Andreatta [2]). Le polynéme
Py= (X +x2—x2) @]+ x5+ x3) + A+ x5 —x5)

appartient a H (16’)2 pour A = 2.

Preuve. Soit Q = P,. On a
o= 90x?t + 12x2x% + 2x5 — 12x7x5 + 2x3,
o= 2xt 4 12x3x2 + 90x; — 12x5x3 + 2x3,
rr 4 4 2.2 2.2 4

144 144

3 3 3 3 3
;,2 = SX:I'XZ + 8X1X2 ’ 13 = — 8x1x3 + 8x1x3 s 23 — — 8x2x:; + 8x2x3 .
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Comme 8x2(x? + x%) < O}, et 8x5(x] + x3) < Q33, on a

17\ 2 rr rr 2,2 2 2 r 2
(l@%(x%+x§)Q23 < 0110557 et (l/gxz(x1+xz)Q13) < Ui

D’aprés ’inégalité 2ab < a? + b2, il en découle
200, 01 O3 < 011 03" + 0% 015 -
D’autre part, on vérifie que
> 54xt 4 2x5 + x5, 1> 20t 4+ 54x5 + x5,
NS — Xt — x5 — 18x3,
et, par conséquent,
(0% - O >xi+ xS+
En regroupant ces informations, on obtient
det Q" < (Q Q3 — 015 Q35 < — (f + x5 + x3) (¢} + X + 18x3)

<0, si x#0.
Pour A > 2, on a, avec u = 30(A — 2).

rr 4_ 4 _4 4 _4 144 4 4 1 4 _4
det P, = — n3x x;x; + w2(x)x;033 — X1X307, — X,Xx;01]
4 rr 17 2 4 17 7 2 4 ’ rr rr2
+ n(x](055 05— 035) + x,(011 033 — O13) — x3(Q1192 — Q12 )
+ det Q" .

Comme tous les coefficients de ce polyndme en p sont négatifs ou nuls, le
déterminant de P, est négatif pour A > 2 et x # 0. Il reste a observer que
P;’ (0,0, 1) = diag(2,2, —30(A + 1)) pour pouvoir conclure que P, appar-

tient 3 H%,. [
L’exemple générique suivant est plus facile a calculer.
(2.7) EXEMPLE. Pour tout k >2 et quels que soient n>=p >0, le
polynome
P(X) = — (4 o + X5+ e+ .+ XK+ L+ XD)
— 8O+ X)) O XD (L L xR
appartient & H@**? si €>0 est assez petit.

Preuve. Puisque P est invariant par toute transformation linéaire qui

conserve (x}+ ... +x2) et (x,,, + ... +x2), daprés (3), il suffit de vérifier
que

det P” (x,,0,...,0,x,) #0 pour (x;,x,) # (0,0) .

Mais quand x = (x;,0,...,0, x,) les seules entrées non nulles de P’’ sont
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Pl = — 2k +2) Qk + D)xi* + 2ek 2k — 1)x**72x% — 2ex?

P}y = ...=Py,= —2(k+ Dx7* + 2ekx* "2x2 — 2ex?*
Py it = oo = Pyoy oy = 28x* — 28k X2 7% 4 2(k + 1)x2*-

P = 2ext* — 2ek 2k — 1)x3x2 72 + 2k + 2) Qk + 1)x2*

Pl =P = dek (X x, — xx2F7Y |
Par conséquent, en (x;,0, ..., 0, x,,),

det P = (P11 Py, — (P1)?) Py Py oy

Pour ¢ assez petit on vérifie que Py}, ..., P, sont négatifset P," , ., ..., P,
sont positifs pour (x;,0,...,0,x,) # (0, ...,0) (cette affirmation est fausse
pour k =1, puisque dans ce cas P}, = — 12x> s’annule pour x # 0). Il

s’ensuit que P’’ a p valeurs propres négatives et ¢ valeurs propres positives si
x+0. [

3. ENONCES DES RESULTATS

(3.1) THEOREME. Supposons m,n>=>2, p=0,...,.n, q=n—p. Alors
l’ensemble H Z g st non vide si, et seulement si [’'une des conditions
suivantes a lieu:

a) m estimpairet p=gq=1;
b) m=2;
c) m=4 et p=q=1 ou p=0 ou q=0;

d) m est pair supérieur ou égal a 6.

(3.2) APPLICATION. Pour m pair =26,n>2 et p=0,...,n, il existe
une hypersurface réguliere M de classe C> de R"+*! contenant 0 telle
que la courbure de Gauss-Kronecker K(x) de M en x vérifie

G K@) ~|x|"m-2 | x—0.

(1) L’hypersurface M a p rayons de courbure principaux négatifs et
q rayons de courbure principaux positifs en tout point voisin de 0.

Il n’existe pas d’hypersurface avec ces propriétés si m=4 et p+0
el n.

(3.3) THEOREME. Soit PeHY) avec m>2 e n=p+q>3.
Alors les variétés de niveaux [resp. de sous-niveaux] de P ont les mémes
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nombres de Betti que les variétés de niveaux [resp. de sous-niveaux] de la forme
. 2 2 2 2
quadratique X — X|... — X, + Xy 1. T X5

Remarque. La condition n=p +q >3 est essentielle dans le théo-
réme (3.3). En effet, dans I’exemple (2.1), le sous-niveau {(PL0} a m
composantes connexes.

(3.4) COROLLAIRE. Si P appartient a Hf,’") avec n>=3 et m22,
alors I’ensemble défini par P = 0 dans 'espace projectif réel est connexe.

4. PREUVES

En dimension supérieure a 2, la proposition-clé suivante impose de s€rieuses
restrictions sur les polynomes de Hﬁ,’f?]. On va D’utiliser a plusieurs reprises
dans la suite.

(4.1) PROPOSITION. Si PeH' avec n>3, alors l'application
P':R"—> R" est un homéomorphisme et sa restriction a R"\0 est un
difféomorphisme.

Preuve. Commencgons par la deuxiéme affirmation. Soit P € H f,m);
d’aprés (2), ’application P’: R” — R” envoie R”\0 dans lui-méme. L’hypo-
thése (1) garantit que P’ est un difféomorphisme local de R”\0 dans lui-
méme. Comme P’ est homogéne, ’application ¢:S”-1 — §”-1 donnée par
d(x) = P'(x)/ | P'(x) | est aussi un difféomorphisme local et il suffit de mon-
trer que ¢ est bijective. Or ¢p(S*~1) est ouvert et fermé; donc ¢ est surjective.
Par suite ¢ est un revétement fini de S”~!. Puisque n >3, S”-! est
simplement connexe si bien que ¢ est injective.

Pour vérifier la premicre affirmation, il suffit de remarquer que ’inverse
de P'| (R"\0) se prolonge continliment 8 R*. [

Avant de commencer la preuve du théoréme (3.3), donnons une version du
lemme 8.6 p. 191 de [8] bien adaptée a notre situation.

(4.2) LEMME. Si PeH\") avec m>2 e n=p+q>3 alorsil
existe une fonction de Morse P € C*(R") avec un seul point critique
d’indice p telle que: |x|>1= P(x) = P().

Preuve. Soit ® € CZ(R") tel que o(x) =1 si |x|<1/2, 0(x) = 0 si
4]x|> 1. Pour @ € R"\0, on pose

P(x) = P(x) —ox) (x|ay, xeRn,.
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En dérivant, il vient
P'(x)=P'(x - o'@®x|la) - o®a
et donc
[P@2 P -lo@lxlal-loe)|al.
Pour | a | assez petit, il en résulte que

inf  |P'(x)| > 1/2 inf |[P'(0)]| >0.

172<€ |x|< 1 1/72< x| 1

‘Quand |x|< 1/2, on a par construction P’(x) = P'(x) — a. Le seul point
critique de P est donc b = (P’) ~!(a). Quitte & prendre | a | encore plus petit,
on peut supposer | b | < 1/2, si bien que ﬁ”(b) = P’"(b). L’indice de Morse
de P en b vaut donc p. [

Preuve du théoréeme (3.3). Les conditions de Palais-Smale (cf. [8] p. 179)
sont satisfaites pour les fonctions P et P du lemme (4.2) puisque

inf |P'(x)|= inf |P'(x)|>0.

[x]>1 [x|>1

Pour a € R, notons
P ={xeR"|Px) <o}, Pi={xeR"|Pkx <o}
les variétés de sous-niveaux de P et P de hauteur a. Posons
ao = supjxj<1(| PG [+ [P ) ]) .

Puisque P a un seul point critique d’indice p situé dans {|x|< 1}, on a

(cf. [8] p. 188).
dimH,(P*, P-%) =&, k=0,...n a>a,,

ou Hj désigne le k-iéme groupe d’homologie a coefficients réels de la pairf, et

8y,, est le symbole de Kronecker. Mais, pour o = ao, Po = pegt P-u
= P~ Donc

dim Hy(P*,P~%) = 8,p, k=0,...,n, 0o2=00.
En utilisant maintenant les lemmes 8.3 p. 181 et 8.4 p. 183 de [8], on obtient

que P¢ est rétracte fort par déformation de R”, pour a > 0, et P~ * est
rétracte fort par déformation de P°\0, pour a > 0. D’ou, pour k = 0, ..., n:

‘ dim Hy(P®) = dimH,(P°) = 8,0, a0,
@) dim H, (P~ ¢) = dim H,(P°\0), a@>0,
dim Hy (P°, PO\O) = & , .

|

A
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La suite exacte longue d’homologie de la paire (P?, PO\ 0) s’écrit
0 — H,(P°\0) > H,(P° — H,(P° P°\0) > H,_, PON0O) — ...
.. = H;(P°\0) = H,(P°) — H\(P°, P°\0) —
— Hy(P°\0) = Hy(P%) — Ho(P°, P°\0) > 0.
Lorsque p = 0, elle se réduit a

O—*H,,(PO\O)—*O—>...—>O—>H0(P°\O)—>R—>R—>O,

si bien que dim Hy(P°\0) = 0, Vk. Pour p = 1, elle se réduit a
.= 0— H,(P°\0)> 0~ R~— Hy(P\0)~>R—0.
D’ou dim Hy(P°\0) = 2 et dim Hy(P°\0) =0 si k> 0. Pour p > 1, on

trouve dim H,(P°\0) = 0si k # p — 1 ou 0, = 1 sinon. En résume,

) 0 si p=0,
dim H,(P°\0) = )
Sk,p_1+5k,0 S1 p>0

Pour la forme quadratique d’indice de Morse p, les relations (4) ont aussi lieu.
D’ou le résultat sur les variétés de sous-niveaux.

Les nombres de Betti des variétés de niveaux de P peuvent &tre calculés avec
la suite de Mayer-Vietoris. En effet, les relations

P-Y(0)=P:n(-P)-* et R'=PU(-P)" ¢ aekR,
donnent des suites exactes
0— H(P-1(a)) » Hy(P) ® H,((-P)-*)—0, pour k>0,
0= Ho(P~1(a)) = Ho(P*) ® Ho((-P)~ %) >R~ 0.
Donc
dim H, (P~ 1(0)) = dim Hy(P®) + dimH,((—- P)~*), pour k>0,
dim Hy(P-1(a)) = dim Hy(P®) + dim Hy((— P)~¢) — 1.

Ces relations ont aussi lieu pour la forme quadratique d’indice p, d’ou le
résultat sur les niveaux de P. U]

(4.3) Remarque. La preuve ci-dessus montre que les conclusions du
théoréme (3.3) ont lieu lorsque P est une fonction de Morse sur R” ayant un
seul point critique d’indice p et satisfaisant les conditions de Palais-Smale.

Preuve du corollaire (3.4). Remarquons d’abord que V:= P-1(0)
N S7-1 est une sous-variété lisse de dimension n — 2 de S”~! puisque si x° est
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- un point critique de P|S7-1!, alors P’(x°) = Ax°, avec A # 0 d’aprés (2),
donc P(x%) # 0 par Euler. De plus, I’intersection de ¥V avec tout hémisphére
ouvert est dense dans ’intersection de V avec I’adhérence de cet hémispheére.
En effet, dans le cas contraire, V aurait une composante V; contenue dans un
équateur de S"~!; pour raison de dimension, V, serait égal a cet équateur et
ceci est absurde car P ne peut s’annuler identiquement sur un hyperplan
vectoriel. Le corollaire sera donc démontré si on vérifie que I’intersection de
V' avec un hémisphere ouvert est connexe.

Si p=n, un argument semblable a celui de la démonstration du
lemme (2.3) montre que sup|,|- 1 P(x) < 0. Donc V est vide.

Si p est compris entre 2 et n—1, soit aeS" ! tel que
sup|x|- 1P(x) = P(a). Comme au lemme (3.2), il vient que a est un vecteur
propre de P’'(a) avec valeur propre positive. Puisque P’ est bijective, la fonc-
tion P|(a + a*) a un unique point critique en a; c’est donc une fonction de
Morse avec un seul point critique d’indice p et qui satisfait les conditions de
Palais-Smale. La remarque (4.3) s’applique et donne que P~ 1(0) n (@ +a*)
est connexe (p > 1). Sa projection sur S”~! est I’intersection de V avec un
- hémisphére ouvert. Le corollaire est donc démontré dans ce cas.

Sip =1 ou 0, on raisonne avec — P. [

(4.4) PROPOSITION. Si P e Hgf’c)] et q=1, alorsil existe un (p+ q—1)-

plan vectoriel m tel que P|me H\)_|.

Preuve. Sip = 0, il n’y arien a démontrer, car la restriction d’une forme
quadratique définie positive a un hyperplan est définie positive.

Supposons dorénavant p > 1. Pour tout p-plan vectoriel c de R" et x € o,
soit A,(x, o) la plus grande valeur propre de P”(x) | 5. Supposons que
5) inf sup Ap(x,0) =20,

ceG(n,p) lx|=1, xeo

ou G(n, p) est la grassmannienne des p-plans vectoriels de R”. Soient ¢° et
x% € 09 des éléments qui réalisent le membre de gauche de (5). Comme
P”’(x%) a au moins une valeur propre négative, il existe des p-plans ¢ arbitrai-
rement voisins de ¢° tels que A,(x?, 6) < A,(x%, 6%). La relation (5) n’a donc
pas lieu et il existe un p-plan o tel que A,(x,c6) <O0si|x|=1c¢et x € o.

Soit m un hyperplan de R” qui contient ¢. Puisque les valeurs propres de
P"(x)| 7 et P”(x)| o sont entrelacées (cf. [3] p. 149), P”'(x) | a au moins
p valeurs propres négatives pour x € ©\0; de méme, en comparant P"(x) et
P (x) | m, on obtient que P’ (x) | © a au moins ¢ — 1 valeurs propres positives.
Donc P|n e HY" []

,q—1°
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Preuve du Théoréeme (3.1).

a) Si Hf'f]“) est non vide, alors la proposition (2.4) entraine n = 2.
D’aprés le lemme (2.3), il faut que p = g = 1.
L’exemple (2.1) démontre ’implication en sens inverse.

b) Ce cas est trivial.

¢) Compte tenu des exemples (2.1), (2.2) et de la proposition (4.4), on
peut supposer ¢ = 1 et n > 2. On procéde par ’absurde en supposant qu’il
existe P ¢ H® 1,1+ Soient

M) >0> M0 =... 20K, xeR™N0,
les valeurs propres de P”’(x). Pour a > 0, on définit
Py(x) = P(X) — 0.(x] + ... + x2)2,

D’apres les inegalités de Weyl (cf. [3] p. 157), les valeurs propres A, ; de
(P,)"" satisfont

Aj(x) —4a | x |2 = N ;) 2 A0 - 12a|x|2, 1<j<n.
Il existe donc o > 0 et a € R” tels que
©6) Aa1 20> A2 e 2han e Agi(@) =0.
Le polynéme P, est noté Q dorénavant. Deux cas peuvent se présenter.
1) Q"(a)a = 0.

Par un changement linéaire de coordonnées, on se raméne a a = (0, ..., 0, 1).
L’hypothése donne Q;;(a) = 0 pour 1 <j < n, si bien que

Q) = A(X') + B(X)x, + CXIX2, X = (X1, ., Xu_1) s

ou A [resp. B] est homogene de degré 4 [resp. 3] et C est une forme quadratique
définie négative.

Le polyndme Q. (x) = Q(x) + €(x} + ... + x%)2 appartient 3 H “: |, pour
g > 0 assez petit (inégalités de Weyl) et on a
Qs(0) = Ac(x") + B(x")x, + Cc(x")X% + ex* |
avec A, homogene de degré 4 et C, uniformément définie négative. Pour

x e R*1 | x’

oy prag . 0Qe : .

= 1, I’équation 5—— (x",x,) =0 admet 3 solutions réelles
Xn

d. . N . GZQS 3 +

1stinctes si € est assez petit car " s’annule en x; = +)/— C:.(x")/6¢

n




230 H.-M. MAIRE

t% %

(x',x,) >0, P (x',x7) < 0. Soient y;(x") < yo(x") < y3(x’) ces
Xn Xn

solutions; I’application

€

Sn—z - Sn~2
X' (Qe) (¢, 1 (x)) / 1(Qe) (', 1 (x) |

est continue injective. Son degré topologique vaut donc + 1 et par suite, elle
est aussi surjective. Il en est de méme pour y;(x") remplacé par y,(x’). On a
donc obtenu une contradiction avec I’injectivité de (Q,)’.

2) Q”(a)b = 0 pour a, b € R” linéairement indépendants.

Par un changement linéaire de coordonnées, on peut supposer
a=(,..,0,1) et b=(,0,...,0). L’hypothése donne Qi;(a) =0, pour
1 < j < n. Puisque la matrice (Q jf,’c(a))z <j,k<n A toutes ses valeurs propres
négatives, on peut supposer, apres multiplication de Q par un scalaire positif

que Q, (@) = — 12. 1l existe un dernier changement linéaire de coordonnées
x = Ux de la forme x, = X;, x; = Z;_lujk)?k,x,, =X, + EZ—luk)?k, tel que
O(x):= Q(Ux) satisfait Q’'(a) = diag(0, —2, ..., —2, —12). En laissant

tomber les tildes, on est arrivé a la forme suivante:

Q) = AE) + Bx)x, + Cx)x: — x4, X" = 0y ooy Xuo1)
X" = X2y cees Xn1)
Développons det Q' (x’, 1) prés de x” = 0:

Bix) 0 0
detQ”(x", 1) = det 0 c” 0 + O(|x’
0 0 —-12

2), x'—0.

Puisque det Q' ne change pas de signe d’apres (6), il faut que B;’I' soit iden-
tiquement nul. Les relations d’Euler 6B;(1,0, ...,0) = B;1(1,0,...,0) pour
1 <j < n— 1 montrent que

) B(1,0,...,0) = B/(1,0,...,0) =0, 1<j<n-1.

Comme plus haut, pour € > 0, soit Q.(x) = Q(x) + 8(x7f + ..+ x2)2,
Maintenant,

Q:(x) = A (x") + B(Xx)x, + Cc(x)x2 — (1 — g)x},

avec Co(x’) = 2ex> — (1 — 2g) (x2 + ... + x>_,). En particulier et d’aprés (7)
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0A,
00 1,0,...,0,x,) = (1,0, ...,0) + 4ex’,
8x1 X
80, 9A. _
¢ 1,0, ...,0,x,) = 1,0,...,0), 2<j<n—-1,
8xj an
00,
¢ (1,0, ...,0,x,) = 4ex, — 4(1 — g)x .
0x;,
Par suite,

0.)'(1,0,...,0, —)/e/A —¢) =(Q:)'(1,0, ...,0, + /e/(1 —¢)) .

On est de nouveau en contradiction avec I’injectivité de (Q,)’.

d) L’exemple (2.7) montre que H;,’f’; est non vide pour m pair supérieur
ouégalae. U

Preuve de !’application (3.2). 11 suffit de prendre P e HL’:’; et M de
la forme

{(x,P®)|x € R} .

En effet, la courbure de Gauss-Kronecker est un multiple positif du déter-
minant hessien de P (cf. [10], p. 93).

Réciproquement, si M est une hypersurface réguliére de R”*! avec (i) et
(i), alors M est localement le graphe de f: U — R avec U ouvert de R”
contenant 0. On peut supposer f(0) = O et £’'(0) = 0 sans changer la courbure.
Développons f en parties homogénes:

fx) =Px +O(x|*H, x-0,
ou P est un polyndme homogéne de degré j > 2. On a:
K((x, f(x)) = h(x)detP"(x) + O(|x|"U-D), x—0,

avec 7(0) > 0. La condition (i) entraine j = m et det P”'(x) # 0 pour x # 0 (on
a utilisé | (x, f(x))| ~ | x|). Donc P € H'™ et (ii) donne P e H™ . D’aprés
le theoréme (3.1), ceci n’est pas possible sim =4 et p#0etn. [J
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