Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 38 (1992)

Heft: 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: KREISPACKUNGEN UND TRIANGULIERUNGEN

Autor: Brägger, Walter

Bibliographie

DOI: https://doi.org/10.5169/seals-59490

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

5.2. Satz. Sei $\rho: E_{\text{Rand}} \mapsto \mathbf{R}_+$ ein Randwinkelsystem und sei W_{Koh}^{ρ} nicht leer. Dann gibt es genau eine immersierte Kreispackung $\eta \in W_{\text{Koh}}^{\rho}$. Das Polyeder P_{η} ist in \mathbf{E} eingebettet, wenn $\rho(e) \leqslant \pi, \forall e \in E_{\text{Rand}}$.

Beweis. Der Raum W_{Koh}^{ρ} ist eine kompakte, konvexe Teilmenge von W. Für $\psi \in \mathring{W}_{\text{Koh}}^{\rho}$ ist sein Tangentialraum $T_{\psi}W_{\text{Koh}}^{\rho}$ unabhängig von ψ . Es gilt:

(8)
$$T_{\Psi}W_{Koh} = \left\{ v \in \mathbf{R}^{S} \middle| \begin{array}{l} \sum\limits_{s \in S} (d, s)v(s) = 0, \quad \forall d \in \Delta \\ \text{und} \\ \sum\limits_{s \in S} (e, s)v(s) = 0, \quad \forall e \in E \end{array} \right\}$$

Nach Lemma 2.3. hat W_{Koh}^{ρ} die Dimension $1 + 2 \# \Delta - \# E = \# K_{\text{In}}$, wobei die letzte Gleichheit wieder mit Induktion über die Anzahl Dreiecke folgt.

Für jede innere Kante k ist der Vektor t_k Tangentialvektor von W_{Koh}^{ρ} . Nach Lemma 2.5. spannen diese den Tangentialraum $T_{\psi}W_{\text{Koh}}^{\rho}$ auf.

Sei L_{Koh}^{ρ} die Einschränkung von L auf W_{Koh}^{ρ} . Dann hat wegen Lemma 3.4. die konkave Funktion L_{Koh}^{ρ} genau einen kritischen Punkt η . Da $(DL_{\text{Koh}})_{\eta}(t_k) = 0$, $\forall k \in K_{\text{In}}$, ist η wegen Lemma 4.3. eine immersierte Kreispackung.

LITERATUR

- [An] Andreev, E. M. On convex polyhedra in Lobacevskii spaces. *Mat. USSR Sbornik 10* (1970), 413-440.
- [Cv1] COLIN DE VERDIÈRE, Yves. Un principe variationnel pour les empilements de cercles. *Inventiones math. 104* (1991), 655-669.
- [Cv2] Comment rendre géodésique une triangulation d'une surface. Enseignement Math. 37 (1991), 201-212.
- [Fa] FARY, I. On straight line representation of planar graphs. Scientiarium Mathematicarum (Acta Universitatius Szegedensis) 11 (1946-1948), 229-233.
- [Mi] MILNOR, J. W. Hyperbolic geometry: the first 150 years. Bull. A.M.S. 6 (1982), 9-24.
- [Tu] THURSTON, William P. The Geometry and Topology of Three-Manifolds. Princeton Notes (1978), chap. 13.

(Reçu le 18 mars 1991)

Walter Brägger

Mathematisches Institut Rheinsprung 21 CH-4051 Basel Vide-leer-emoty