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4. IMMERSIERTE KREISPACKUNGEN

4.1. Satz 3.6. besagt, dass Lgo, auf Wgon genau einen kritischen Punkt n
annimmt. Da die Vektoren {#|k € K} den Tangentialraum 7, Wgon
aufspannen, ist 1 € Wgo, genau dann ein kritischer Punkt, wenn (DLgop )y (%)
= 0, vk € K. Ist k eine Kante von P und n € Wxgon kOnnen wir die Blume
um k, d.h. die Vereinigung aller Dreiecke in welchen k enthalten ist,
geometrisch realisieren.

Bemerkung. Drei Grossen a, b, ¢, welche die Dreiecksungleichungen
erfiillen, definieren bis auf Kongruenz genau ein euklidisches Dreieck. Sei
=(—a+b+c)/2,y=(+a—-b+¢)/2 und z=(+a+b—-c)/2. Dann ist
a=y+2z,b=x+ 2z c=y+ x und wegen den Dreiecksungleichungen sind
x, y und z positiv. Umgekehrt definieren drei positive Grossen x, ¥y und z bis
auf Kongruenz genau ein euklidisches Dreieck. Der Inkreis eines Dreiecks teilt
die Seiten gerade im Verhéltnis x/y, y/z und z/x (siehe Figur 7).

Sei zuerst k € Ky, eine innere Kante. Realisieren wir die Blume um & in E,
erhalten wir zwei Dreiecke d, und d; mit gemeinsamer Kante | k| und den
Winkeln a, B, y bzw. a’, B, y’. Die Inkreise der Dreiecke d, und d, teilen die
Kante | k| im Verhiltnis x/y und x’/y’. Sind R und R’ die Inkreise der
Dreiecke d; und d; so folgt (siehe Figur 8):

X )

FiGgur 7 FIGUR 8

Zwei Dreiecke mit gemeinsamer Kante

0 = (DLxon), (%)

d
= %L(n + Stk) |g=0
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| Realisieren wir in E die beiden an k anliegenden Dreiecke mit gemeinsamer
Kante | k|, so ist (DLgoh), (#) genau dann null, wenn sich die Inkreise der
' beiden Dreiecke beriihren. Somit ist x = x’, ¥y = y" und da R = x - tan(a/2)
gilt fiir die Inkreise R und R’

Ist £k € Kranqg €ine Randkante, so liegt & nur in einem Dreieck d.
Realisieren wir d in E, dann teile der Inkreisradius | k | wieder im Verhéltnis
x/y. Aus (DLKoh)n(z‘k) = 0 folgt dann x/y = 1. Der Inkreis teilt somit | k |
im Verhdiltnis 1:1.

4.2. Wir nennen y € Wk, eine immersierte Kreispackung (sieche Figur 9)
wenn y in Wge, liegt und folgende Bedingungen erfiillt:

— Um jeden Eckpunkt e von P, (Bezeichnungen wie in 2.7.) ldsst sich ein
Kreis C, schlagen, der alle Kanten, die von e ausgehen, schneidet.

— Sind zwei Ecken e und e’ durch eine Kante verbunden, so sollen sich die
Kreise C, und C,- beriihren.
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FIGUR 9

Beispiel einer immersierten Kreispackung

4.3. LEMMA. Fiir n € Wkon sSind folgende Aussagen dquivalent:
(1) n ist eine immersierte Kreispackung,
(i) (DLxon), (t) = 0, VK € Kiy.

Beweis. (i) = (ii): Sei n eine immersierte Kreispackung. Dann schneiden
die Kreise C, die Seiten der Dreiecke von P, in den Beriihrungspunkten der
Inkreise. Haben zwei Dreiecke von P, eine gemeinsame Kante | k |, so fallen
auf | k| die Beriihrungspunkte der Inkreise zusammen und es folgt

(DLgan), (1) = 0.

(if) = (i): Sei e ein innerer Eckpunkt und seien d!, ..., d” die Dreiecke der
Blume um e wobei d’ und d‘*! die Kante k; gemeinsam haben. Wir realisieren
erst d! in E. Dann realisieren wir die Dreiecke d2, ..., d" so, dass d; mit a’f;l
genau die Kante | k;_, | gemeinsam hat.
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~ Sei df]“ eine weitere Realisierung von d!, welche aber mit d; die Kante
| k, | gemeinsam hat. Da die Winkelsumme um jeden Eckpunkt 27 betrigt,
‘haben die Dreiecke df] und d;’” keinen inneren Punkt gemeinsam (siehe
Figur 10).

s S e e e iy
dn+1
4 /
1
dy dy ,
dn
FiGgur 10

Die Blume um einen inneren Eckpunkt

Wegen (DLxon), (%,;) = 0 beriihren sich die Inkreise der Dreiecke d; und
d,"'. Bezeichnen wir mit R; den Inkreisradius des Dreiecks d} und mit a; den
Winkel von d; der an die Ecke e stdsst, dann folgt

R, R, R, R, 3 tan (0;/2) tan (a.,/2) _ 1
Rn +1 Rz R3 Rn +1 tan (0.2/2) tan ((11/2)

Folglich fallen die Dreiecke d,, d;*' zusammen und die Blume um e schliesst
sich. Da sich die Blume um jeden inneren Eckpunkt schliesst, ist n immersiert
realisierbar. Haben zwei Dreiecke eine gemeinsame Kante, so beriihren sich in
P, C E ihre Inkreise. Wir konnen somit um jeden Eckpunkt von P, einen
Kreis schlagen, der die Kanten in den Beriihrungspunkten der Inkreise
'schneidet. Diese Kreise erfiillen die Kreispackungseigenschaft 4.2. [

44 SATZ. Fiir jedes Polyeder P mit |P| homdomorph zur Kreis-
' scheibe existiert genau eine immersierte Kreispackung, bei der alle Randkreise

gleich gross sind.
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Beweis. Nimmt Lg.,, das Maximum auf Wge, in mn an, so gilt
(DLKoh)n(tk) = 0 vk € K, nur fir n. Aus (DLKoh)n(tk) = 0, Vk € Kj, folgt die
Kreispackungseigenschaft und wegen (DLxon), (%) =0 Vk € Krana sind alle
Randkreise gleich gross. [J

4.5. BEWEIS DES SATZES VON ANDREEV. Sei 7 eine Triangulierung der
Sphire S2 und e, e,, e; die Eckpunkte eines Dreiecks von 7. Die Gruppe der
Mobiustransformationen operiert dreifachtransitiv auf der Sphére. Mit einer
Mobiustransformation und anschliessender stereographischer Projektion
konnen wir e, e;, e; auf die Eckpunkte eines gleichseitigen euklidischen
Dreiecks so abbilden, dass alle andern Ecken von 7 im Inneren dieses Dreiecks
liegen. Wir erhalten so eine Triangulierung eines gleichseitigen Dreiecks in E.
Nach Satz 4.4. existiert dann genau eine immersierte Kreispackung, deren
Graphen das 1-Skelett einer Triangulierung eines wiederum gleichseitigen
Dreieckes ist (alle drei Randkreise haben denselben Radius). Darum ist diese
Kreispackung sogar in E eingebettet (siche Figur 11). Transformieren wir auf
S2 zurlick erhalten wir eine Kreispackung auf der Sphire. Die Eindeutigkeit
bis auf Mobiustransformation folgt aus der Eindeutigkeit im euklidischen Fall.

A

FIGur 11
Kreispackung auf der Sphire
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