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KREISPACKUNGEN UND TRIANGULIERUNGEN 207

Wir haben in RS nun drei Mengen W D Wgon O Wageo definiert. Die
Menge W, sitzt als Teilmenge kompliziert in Wgon. Wir kennen fur Wee,
keine direkte Beschreibung. Im nédchsten Paragraphen definieren wir auf W
eine Funktion L. Es zeigt sich, dass die Einschrdankung von L auf Wk, genau
einen kritischen Punkt in I/I(}Koh hat. Dieser liegt auch in Wg,, und das
1-Skelett seiner geometrischen Realisierung entspricht dem Graphen einer

Kreispackung.
3. DIE FUNKTION L: W —R

3.1. Wir definieren fir y e W

w(s)/2

4) Ly)= -2 Y s log tan Y d¢

sesS
0

Die so definierte Funktion L: W R ist auf W stetig und auf W analytisch.
Es sei bemerkt, dass sich das Integral

o/2
I(a):= — logtan $d¢ « € [0, n]
0

mit der Lobatchevsky-Funktion & : R R ausdriicken lidsst. Sei & ) :
5

— j log | 2 sin ¢ | @9, dann gilt

1(5) = g(ﬁ) + g(” _5) .
2 2

Mit der Lobatchevsky-Funktion kann man das Volumen hyperbolischer
3-Simplices aus deren Keilwinkel bestimmen. Darum hat auch I(8) und
L ]onh eine geometrische Bedeutung im hyperbolischen 3-Raum H3. In 3.2.
ordnen wir jedem Winkelsystem y € Wy, eine Figur in H3 so zu, dass L(y)
dem Volumen dieser Figur entspricht. Diese geometrische Interpretation von
L|we, wird zum nackten Beweis des Satzes von Andeev jedoch nicht
verwendet.
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FIGUR 4

d
Die Funktionen 7: [0, t] = R und — I(a): (0, ) = R
da

3.2. Sei Q3,6 € (0, n) ein idealer 3-Simplex im hyperbolischen 3-Raum mit
den Keilwinkeln 8/2, (m — 8)/2 und ©/2. Dann gilt (vgl. hierzu [Mi]):

Voluy, (Qs) = g(g) 4 g(”—zﬁ) - 1(5) .

Fir ein euklidisches Dreieck d mit den Winkeln a, B, ¥ konstruieren wir in
H3 ecine Figur A(d) folgendermassen:

Wir wéhlen fiir H?® das Model C X R, und schreiben 0H? = C U {0 }.
Seien A4, B, C die Eckpunkte von d C C, M der Mittelpunkt des Inkreises und
A’, B, C’ die Fusspunkte der Lote von M auf die Seiten von d (siehe Figur 5).

C

FIGUR 5

Zerlegung eines Dreiecks
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Die Menge A(d) ist die konvexe Hiille in H? der Punkte 4, B, C, M, A’, B’,
C’, ». Sie zerlegt sich in 6 Simplices und zwar je zwei Kopien Q,, Qg, Q,.

Somit gilt fiir y € I/I(}Koh
L{y) = Z VOlHyp(x(dw)) )

de A

wobei d,, C C eine Realisierung von d ist, deren Winkel y entsprechen. Fur
Yy € W nicht in Wg,, kennen wir keine geometrische Bedeutung fir L(vy).

3.3. Seien ¢ und y zwei verschiedene Randpunkte von W, dann sei

[0, y]:= {tW“‘(l—t)(D}te[o,l] cCw.

Wir nennen [¢, y] maximal, wenn {ty + (1 — )@}, cr N W = [0, v].

3.4. LEMMA. Seien @ und vy zwei verschiedene Randpunkte von W,
so dass [¢,vy] maximal ist. Dann bildet die Funktion

tHdL(t + (1 =0)y)
= ® v

das Intervall (0,1) homdbomorph auf R ab.

Beweis. Betrachten wir nochmals die Funktion I7:[0, n]+— R. Fiir
a € (0, ) gilt

1) = - Llog [tan i Lo :
— L) = — —10g an — un e a) = — .
da. 2 2 do? 2 sin o

Sei nun y:[0, 1]~ W mit y(¢): =t + (1 — #)y. Dann gilt fir ¢ e O, 1):

d

(5) — Loy =— Y log (tan W)(S)) (0 =) (5)
dt se S’ 2
d2 . 2

©) Loy= _ (¢ —v)?(s)

<0,
ses sin (Y(2)(s))
wobei S = {s € S|p(s) # y(s)} ist. Nach (5) gilt:

dr>

-1

. [d , d
lim (E(LOY)(”) = 4+ o und Ilim (Zt(LOy)(t)) = — 00,

... d —
Somit ist Zt (L ©v) surjektiv und wegen (6) streng monoton. [
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d
Fir t=0 und #=1 ist ;;(LOY) in R nicht definiert. Wegen (7)

definieren wir aber

—d(Lo ) | + d —d(L )|
=0 = ®© un o =1 = — .
dt THe=0 dt Lt

Nach Lemma 3.4. ist die Funktion L |, ,: [0, w] = R konkav und nimmt
in den Randpunkten ¢ und y kein Maximum an. Wir erhalten somit:

3.5. PROPOSITION. Die Funktion L: W= R st auf W streng konkav.
Sei im Folgenden Lk, die Einschrankung von L auf Wgg,.
3.6. SATZ. Die Funktion Lygn: Wxon 2> R nimmt auf der k%mpakten

Menge Wy, genau ein Maximum an. Dieses Maximum liegt in Wy, und
ist dort der einzige kritische Punkt.

1 #e-) Y

FIGUR 6

Die Einschrdnkung von L auf das Intervall [, y]

Beweis. Die Teilmenge Wgo, von W ist selbst wieder konvex und die
Randpunkte von Wk, sind auch Randpunkte von W. Die Behauptung folgt
nun nach Lemma 3.4. U
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