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Wir haben in R5 nun drei Mengen W D W^0h D WGqq definiert. Die

Menge WGco sitzt als Teilmenge kompliziert in WKoh. Wir kennen für WGeo

keine direkte Beschreibung. Im nächsten Paragraphen definieren wir auf W
eine Funktion L. Es zeigt sich, dass die Einschränkung von L auf WKoh genau

o
einen kritischen Punkt in WKoh hat. Dieser liegt auch in WGeo und das

1-Skelett seiner geometrischen Realisierung entspricht dem Graphen einer

Kreispackung.

3. Die Funktion L:W-+ R

3.1. Wir definieren für y e W

(4) L(V) -£
s s S

I Vis)/2 ^

I log tan û dû

Die so definierte Funktion L: R ist auf W stetig und auf W analytisch.
Es sei bemerkt, dass sich das Integral

a/2

/(a) : log tan û dû a e [0, n]

mit der Lobatchevsky-Funktion : R R ausdrücken lässt. Sei 5f(5) :

6

- | log | 2 sin û | dû, dann gilt

7TO sr(|) t
Mit der Lobatchevsky-Funktion kann man das Volumen hyperbolischer

3-Simplices aus deren Keilwinkel bestimmen. Darum hat auch 1(8) und
L I^Koh eine geometrische Bedeutung im hyperbolischen 3-Raum H3. In 3.2.
ordnen wir jedem Winkelsystem \|/ e B^oh eine Figur in H3 so zu, dass L(\j/)
dem Volumen dieser Figur entspricht. Diese geometrische Interpretation von
L
verwendet.

wird zum nackten Beweis des Satzes von Andeev jedoch nicht
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Figur 4

d
Die Funktionen /: [0, %] H- R und — 1(a) : (0,7t) H- R

da

3.2. Sei Q5, 5 e (0,7t) ein idealer 3-Simplex im hyperbolischen 3-Raum mit
den Keilwinkeln 6/2, (n - ô)/2 und 7t/2. Dann gilt (vgl. hierzu [Mi]):

Fo/Hyp(Q6) 7(ô) •

Für ein euklidisches Dreieck d mit den Winkeln a, ß, y konstruieren wir in
H3 eine Figur X(d) folgendermassen:

Wir wählen für H3 das Model C X R+ und schreiben 6H3 Cu{oo).
Seien A, B, C die Eckpunkte von d C C, M der Mittelpunkt des Inkreises und
A B', C' die Fusspunkte der Lote von M auf die Seiten von d (siehe Figur 5).

c
/r-

B'IC
M

/ K.

AC' B
Figur 5

Zerlegung eines Dreiecks
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Die Menge X(d) ist die konvexe Hülle in H3 der Punkte A, B, C, M, A \ B',
C, oo. Sie zerlegt sich in 6 Simplices und zwar je zwei Kopien Qa, Qß, Qy.

o
Somit gilt für y e WKoh

L(y)= X VolHyp(Ud,))
de A

wobei dy C C eine Realisierung von d ist, deren Winkel \|/ entsprechen. Für

i\f e W nicht in WKoh kennen wir keine geometrische Bedeutung für L(\|/).

3.3. Seien cp und \p zwei verschiedene Randpunkte von W, dann sei

[<P, V|/] î= {Ap + (1 - 0<P}c s [0,1] c

Wir nennen [cp, cp] maximal, wenn {Ap + (1 - t)cp}, e R n W [cp, \p].

3.4. Lemma. Seien cp und cp zwei verschiedene Randpunkte von W,
so dass [cp, ip] maximal ist. Dann bildet die Funktion

+ (1 ~
dt

das Intervall (0, 1) homöomorph auf R ab.

Beweis. Betrachten wir nochmals die Funktion [0,7t] ^ R. Für
a e (0, jt) gilt

d 1 / a\ 1

— 1(a) — log tan - und 7(a)
da 2 \ 2) da2 2 sin a

Sei nun y:[0,1] i-» Wmit y(t) :tcp + (1 - t)\p. Dann gilt für t e (0,1):

(5) J,L°y =~ + l0" ('a'1 —j ll'p VMD)

,6) Ç-P'y- Edt2 seS'Sin (y(t)(s))
wobei S'{5 e S|cp(s) * \p(s)} ist. Nach (5) gilt:

lim (Z,OY)(t)] +oo und lim
<~o\dt ,_j

Somit ist —-(Loy) surjektiv und wegen (6) streng monoton.



210 W. BRÄGGER

d
Für t 0 und t 1 ist — (Loy) in R nicht definiert. Wegen (7)

dt
definieren wir aber

d
| d

— (Loy) |, 0 + oo und — (Loy) 1 - oo
dt dt

Nach Lemma 3.4. ist die Funktion L 1^,^: [(p, \p] ^ R konkav und nimmt
in den Randpunkten (p und \j/ kein Maximum an. Wir erhalten somit:

3.5. Proposition. Die Funktion LrfF^R ist auf W streng konkav.

Sei im Folgenden LKoh die Einschränkung von L auf WKoh.

3.6. Satz. Die Funktion LKoh: WKoh -> R nimmt auf der kompakten
o

Menge WKoh genau ein Maximum an. Dieses Maximum liegt in lVKoh und
ist dort der einzige kritische Punkt.

>
1 j(r-r) r

Figur 6

Die Einschränkung von L auf das Intervall [(p, \j/]

Beweis. Die Teilmenge WKoh von W ist selbst wieder konvex und die

Randpunkte von WKoh sind auch Randpunkte von W. Die Behauptung folgt
nun nach Lemma 3.4.
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