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202 W. BRÄGGER

Untersucht man diese Funktionale, stösst man rasch auf die Lobachevsky-
Funktion und damit auf das Volumen hyperbolischer 3-Simplices.

Im folgenden wollen wir den Satz von Andreev beweisen, indem wir
Kreispackungen als Maxima konkaver Funktionale auf W [0, n]s
(S Sektorenmenge von T) interpretieren.

Figur 1

Beispiel einer Kreispackung

2. Vorbereitungen

2.1. Sei P ein Polyeder, dessen Standard-Realisierung \P \ in RE homöo-

morph zu einer Kreisscheibe ist. Seien E E(P), K - K{P), À A(P) die

Mengen aller Eckpunkte (O-Simplices), Kanten (1-Simplices) und Dreiecke

(2-Simplices) von P. Jedes 2-Simplex hat drei Winkelsektoren, im folgenden
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Sektoren genannt. Sei S S(P) die Menge der Sektoren aller Dreiecke von P.

Für d e À, 5 e S und e e E definieren wir noch die Inzidenzzahlen

wenn der Sektor 5 im Dreieck d liegt

10 sonst
(d, s)

(e, s):

H:
1 wenn der Sektor s an die Ecke e stösst

0 sonst

Wir nennen k e K eine Randkante, wenn k nur in einem Dreieck enthalten ist,

sonst eine innere Kante. Sei ^Rand die Menge der Rand- und Kïn jene der

inneren Kanten. Entsprechend nennen wir diejenigen Eckpunkte, welche in
einer Randkante liegen, Randecken, die restlichen innere Eckpunkte. Seien

ERand C E und Ein C E die Mengen der Rand- bzw. inneren Eckpunkte.
Ein Polyeder P wie oben definiert eine topologische Triangulierung der

Kreisscheibe. Jede solche Triangulierung können wir aber auch geradlinig
realisieren. Es gilt der folgende Satz (siehe [Fa]):

Satz von Fary. Zu jeder topologischen Triangulierung T der
Kreisscheibe gibt es eine geodätische Triangulierung T' eines Polygons in E,
so dass die 1-Skelette von T und T' kombinatorisch äquivalent sind.

2.2. Für ein Polyeder P mit | P \ homöomorph zur Kreisscheibe sei

W= [0,7t]5 der Raum der Abbildungen \j/ : S [0, n]. Damit ist W eine

kompakte, konvexe Teilmenge von R5.

Wir betrachten eine Realisierung von P, wie im Satz von Fary, und
bezeichnen den Winkel des Sektors 5 in dieser Realisierung mit Dann ist
die Abbildung 5^11/(5) ein Element von W mit folgenden Eigenschaften:

£ (dy s)\|/(s) 71 vd e A
s e S

£ (e, s)v|/(s) 2n Ve e E]n
S e S

Erfüllt ein i|/ e WdasGleichungssystem (1), nennen wir \|/ ein kohärentes
Winkelsystem. Sei WKoh die Menge dieser Winkelsysteme. Die Räume W und
WKoh sind kompakte, konvexe Teilmengen von Rs. Wir bezeichnen mit
WKoh WKohr\(0,7t)s die Menge der inneren Punkte der Menge WKoh.
Nach dem Satz von Fary ist WKoh nicht leer. Wir zeigen nun, dass das
Gleichungssystem (1) linear unabhängig ist. Die konvexe Menge hat
demnach die Dimension #S -#A- #E,„ 2(#A) - #Eln 1 + #K.
Dabei folgt die letzte Gleichheit etwa mit Induktion über die Anzahl Dreiecke.

Für de A ist die Abbildung s*->(d,s) ein Element von Rs. Wir
bezeichnen es mit d,•).Analog definieren wir •) e Rs.
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2.3. Lemma. Die linear Hülle von {(d, • (e, • | e e E, d e A} im
Vektorraum Rs hat die Dimension #A + #E - 1.

Beweis. Sei

(2) X aAd, •) - X •) 0
de A e e £

eine Relation. Wir zeigen, dass alle Koeffizienten dieser Relation gleich gross
sind. Sei d ein Dreieck von P und e eine Ecke, welche in d enthalten ist. Dann

gibt es genau einen Sektor 5 mit (e, s) (d, s) 1. Für alle Eckpunkte e' ^ e

und Dreiecke d'^ d gilt (e\ s) (d',s) - 0. Testen wir (2) mit 5 folgt
ad — be. Seien nun e und e' zwei Eckpunkte, welche mit einer Kante k e K
verbunden sind. Dann gibt es ein Dreieck d e Ä, so dass k in d enthalten ist.
Es folgt be ad — be>. Da sich nun zwei beliebige Eckpunkte e und e' durch
einen Kantenzug verbinden lassen, muss für alle Eckpunktpaare e und e' gelten
be be'. Ebenso folgt für beliebige de A und e e E die Gleichheit ad - be.

Bezeichnen wir mit 15 die konstante Funktion, welche jeden Sektor s e S

auf 1 e R abbildet, so gilt

1,S X (d, •) X (e, •)
de A eeE

und die Relation (2) ist also proportional zur Relation

X (d. )-Xte -) 0.
de A e e E

Da für jedes Polyeder ERdLnd nicht leer ist, ist das System

{{d, - {e, - | e e EYn, d e A} linear unabhängig und wir erhalten:

2.4. Proposition. Das Gleichungssystem (1) ist linear unabhängig.

Als Lösungsraum linearer Gleichungen ist WKoh konvex und für jeden

inneren Punkt \j/ ist der Tangentialraum T¥WKoh somit unabhängig von \j/. Es

gilt

(3) E\j/ ff^Koh — VE RS

£ (d, s)v(s) 0, Wd e A
s e S

und

X (e,s)u(s) 0, Ve e
s e S
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Wählen wir auf | P | eine Orientierung, so induziert diese eine Orientierung auf
jedem Dreieck von | P |. Sei nun k eine Kante mit den anliegenden Sektoren

Si, s2, s3 und s4, so dass bezüglich der Orientierung von | P | die Numerierung
wie in Figur 2 vorliegt.

Numerierung für eine innere Kante und eine Randkante

Für k e Kln sei tk e T^WKoh der Vektor

I
- 1 wenn s sY oder s s4

1 wenn s s3 oder s s2

0 sonst

und für k e ÄRand sei tk e TxvWKoh der Vektor

:

- 1 wenn s
1 wenn ^
0 sonst

2.5. Lemma. Das System {tk\ k eK)hatden Rang - 1+ # K.

Beweis. Sei

X] &ktk ~ 0
k g K

eine Relation und seien k,k'eKdiebeiden Schenkel eines Sektors 5. Dann gilt

0 akh^ is) ±{ak-ak')

Testen wir so mit allen Sektoren sehen wir, dass X h 0 die einzige lineare
k 6 K

Relation des Systems {tk\ k eK)ist.
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Der Raum TyWKoh hat die Dimension -1 + #K. Nach Lemma 2.5.

folgt:

2.6. Proposition. Die Vektoren tk spannen den Tangentialraum
Ty W^oh auf.

2.7. Ist e ein Eckpunkt von P, so verstehen wir unter der Blume von e die

Vereinigung aller Dreiecke d e À, welche e als Eckpunkt enthalten.
Sei G= G(P) die Menge der Abbildungen g:|P|^E (wobei E die

euklidische Ebene bedeute und \P \ die Standard-Realisierung von P), die

folgende Eigenschaften erfüllen:

• g ist affin auf jedem Dreieck von | P |,

• g ist injektiv auf jeder Blume von | P |.

Jedes g e G liefert uns eine Abbildung \|/ : S - [0,7t] wenn wir jedem Sektor
seinen Winkel in g(| P |) C E zuordnen. Da g injektiv auf jeder Blume ist, ist

ij/ sogar kohärent, also in WKoh. Wir haben so eine ,,Winkelablesefunktion"

A:GWKoh.
Ein Winkelsystem y e A (G) nennen wir geometrisch realisierbar und die

Teilmenge von WKoh, mit dieser Eigenschaft, WGqo. Für \\f e WGeo bezeichnen

wir mit : | P | E eine geometrische Realisierung des Winkelsystems \|/ und
mit Pv C E das Bild von

Eine Realisierung, wie im Satz von Fary, liefert ein \j/ e WKohi welches
o

sogar in WGe0 liegt. Darum ist auch WGt0 nicht leer. Nicht jedes y e WKoh

liegt aber in WGeo. Betrachten wir in E etwa die Triangulierung von Figur 3.

Neun dieser gleichseitigen Dreiecke bestimmen das zehnte Dreieck vollständig.
Ist \j/ das Winkelsystem dieser Triangulierung und k eine Kante, so liegt

\|/ + s tk nur für 8 0 in WGeo.

Figur 3

Für jede Kante führt die Scherung " tk aus WGt0 hinaus
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Wir haben in R5 nun drei Mengen W D W^0h D WGqq definiert. Die

Menge WGco sitzt als Teilmenge kompliziert in WKoh. Wir kennen für WGeo

keine direkte Beschreibung. Im nächsten Paragraphen definieren wir auf W
eine Funktion L. Es zeigt sich, dass die Einschränkung von L auf WKoh genau

o
einen kritischen Punkt in WKoh hat. Dieser liegt auch in WGeo und das

1-Skelett seiner geometrischen Realisierung entspricht dem Graphen einer

Kreispackung.

3. Die Funktion L:W-+ R

3.1. Wir definieren für y e W

(4) L(V) -£
s s S

I Vis)/2 ^

I log tan û dû

Die so definierte Funktion L: R ist auf W stetig und auf W analytisch.
Es sei bemerkt, dass sich das Integral

a/2

/(a) : log tan û dû a e [0, n]

mit der Lobatchevsky-Funktion : R R ausdrücken lässt. Sei 5f(5) :

6

- | log | 2 sin û | dû, dann gilt

7TO sr(|) t
Mit der Lobatchevsky-Funktion kann man das Volumen hyperbolischer

3-Simplices aus deren Keilwinkel bestimmen. Darum hat auch 1(8) und
L I^Koh eine geometrische Bedeutung im hyperbolischen 3-Raum H3. In 3.2.
ordnen wir jedem Winkelsystem \|/ e B^oh eine Figur in H3 so zu, dass L(\j/)
dem Volumen dieser Figur entspricht. Diese geometrische Interpretation von
L
verwendet.

wird zum nackten Beweis des Satzes von Andeev jedoch nicht
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