Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 38 (1992)

Heft: 3-4: L'ENSEIGNEMENT MATHEMATIQUE
Artikel: KREISPACKUNGEN UND TRIANGULIERUNGEN
Autor: Bragger, Walter

Kapitel: 2. VORBEREITUNGEN

DOI: https://doi.org/10.5169/seals-59490

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-59490
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

202 W. BRAGGER

Untersucht man diese Funktionale, stosst man rasch auf die Lobachevsky-
Funktion und damit auf das Volumen hyperbolischer 3-Simplices.

Im folgenden wollen wir den Satz von Andreev beweisen, indem wir
Kreispackungen als Maxima konkaver Funktionale auf W = [0, n]S
- (S =Sektorenmenge von T) interpretieren.

FIGUR 1

Beispiel einer Kreispackung

2. VORBEREITUNGEN

2.1. Sei P ein Polyeder, dessen Standard-Realisierung | P | in RE homoo-
morph zu einer Kreisscheibe ist. Seien E = E(P), K = K(P), A = A(P) die
Mengen aller Eckpunkte (0-Simplices), Kanten (1-Simplices) und Dreiecke
(2-Simplices) von P. Jedes 2-Simplex hat drei Winkelsektoren, im folgenden
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Sektoren genannt. Sei S = S(P) die Menge der Sektoren aller Dreiecke von P.
Fir d € A, s € S und e € E definieren wir noch die Inzidenzzahlen

@ 9 1 wenn der Sektor s im Dreieck d liegt
,S) 1=
0 sonst

@9 1 wenn der Sektor s an die Ecke e stdsst
e, s =
0 sonst.

Wir nennen k € K eine Randkante, wenn k nur in einem Dreieck enthalten ist,
sonst eine innere Kante. Sei Kgra.q die Menge der Rand- und Kj, jene der
inneren Kanten. Entsprechend nennen wir diejenigen Eckpunkte, welche in
einer Randkante liegen, Randecken, die restlichen innere Eckpunkte. Seien
Er.da C E und Ey, C E die Mengen der Rand- bzw. inneren Eckpunkte.

Ein Polyeder P wie oben definiert eine topologische Triangulierung der
Kreisscheibe. Jede solche Triangulierung koénnen wir aber auch geradlinig
realisieren. Es gilt der folgende Satz (siehe [Fa]):

SATZ VON FARY. Zu jeder topologischen Triangulierung T der
Kreisscheibe gibt es eine geoddtische Triangulierung T’ eines Polygonsin E,
so dass die 1-Skelette von T wund T’ kombinatorisch dquivalent sind.

2.2. Fir ein Polyeder P mit |P| homdomorph zur Kreisscheibe sei
W = [0, n]5 der Raum der Abbildungen y:S~ [0, ®]. Damit ist W eine
kompakte, konvexe Teilmenge von RS,

Wir betrachten eine Realisierung von P, wie im Satz von Fary, und
bezeichnen den Winkel des Sektors s in dieser Realisierung mit y (s). Dann ist
die Abbildung s~ y(s) ein Element von W mit folgenden Eigenschaften:

Y @)y =n, vdeA

ses

M) Y @)yl =2n, veekE,.

ses

Erfullt ein y € W das Gleichungssystem (1), nennen wir y ein kohdrentes
Winkelsystem. Sei Wx,, die Menge dieser Winkelsysteme. Die Rdume W und
I/I(/)'Koh sind kompakte, konvexe Teilmengen von RS. Wir bezeichnen mit
Wkon = Wkon N (0, ©)5 die Men%e der inneren Punkte der Menge Wy .
Nach dem Satz von Fary ist Wy, nicht leer. Wir zeigen nun, dass das
Gleichungssystem (1) linear unabhingig ist. Die konvexe Menge W, hat
demnach die Dimension #S — #A — #E, = 2(#A) — #E, = — 1 + #K.
Dabei folgt die letzte Gleichheit etwa mit Induktion iiber die Anzahl Dreiecke.

Fir d e A ist die Abbildung s+ (d,s) ein Element von RS. Wir
bezeichnen es mit (d, -). Analog definieren wir (e, -) € RS,
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2.3. LEMMA. Die linear Hiille von {(d,),(e, ")|ecE,de A} im
Vektorraum RS hat die Dimension #A + #E — 1.

Beweis. Sei

) Y aid,-)— Y ble)=0

de A ecF

eine Relation. Wir zeigen, dass alle Koeffizienten dieser Relation gleich gross
sind. Sei d ein Dreieck von P und e eine Ecke, welche in d enthalten ist. Dann
gibt es genau einen Sektor s mit (e, s) = (d, s) = 1. Fiir alle Eckpunkte e’ # e
und Dreiecke d’ # d gilt (e’,s) = (d’,s) = 0. Testen wir (2) mit s folgt
a; = b,. Seien nun e und e’ zwei Eckpunkte, welche mit einer Kante £k € K
verbunden sind. Dann gibt es ein Dreieck d € A, so dass k in d enthalten ist.
Es folgt b, = a; = b,.-. Da sich nun zwei beliebige Eckpunkte e und e’ durch
einen Kantenzug verbinden lassen, muss fiir alle Eckpunktpaare e und e’ gelten
b. = b... Ebenso folgt fiir beliebige d € A und e € E die Gleichheit a;, = b,.

Bezeichnen wir mit 15 die konstante Funktion, welche jeden Sektor s € S
auf 1 € R abbildet, so gilt

IS: Z (d)-): Z (e).)

de A ecFE

und die Relation (2) ist also proportional zur Relation

Y @d)- Y @e)=0. L[

de A eeE

Da fir jedes Polyeder FEgra,q nicht leer ist, ist das System
{(d, ), (e, -)| e € Ey,d e A} linear unabhingig und wir erhalten:

2.4. PROPOSITION. Das Gleichungssystem (1) ist linear unabhdngig.

Als Losungsraum linearer Gleichungen ist Wy, konvex und fiir jeden
inneren Punkt vy ist der Tangentialraum 7\, Wy, somit unabhingig von y. Es
gilt

Y (@, s)u(s) =0, vdeA
seS

(3) T\ll WKoh = {veRS und
Y (e, s)u(s) =0, VeekE,

ses
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Wihlen wir auf | P | eine Orientierung, so induziert diese eine Orientierung auf
jedem Dreieck von |P l Sei nun k eine Kante mit den anliegenden Sektoren
S1» S2, 83 und sy, so dass beziiglich der Orientierung von | P | die Numerierung
wie in Figur 2 vorliegt.

FiGur 2

Numerierung fiir eine innere Kante und eine Randkante

Fir k € Ky, sei #, € T,,Wgq, der Vektor

—1 wenn s =5, oder s = s,
1(s) : = I wenn s = s; oder s = s,
0 sonst

und fir k£ € Kgang S€l % € Ty Wyon der Vektor

—1 wenn s = s
L(s) : = 1 wenn s =g,
0 sonst .

2.5. LEMMA. Das System {t;|k € K} hat den Rang —1 + #K.

Beweis. Sei

Z aipty = 0

kekK

eine Relation und seien &, k* € K die beiden Schenkel eines Sektors s. Dann gilt

0 = ( Z aktk) (S) = i—(ak—akr) .

kek

Testen wir so mit allen Sektoren sehen wir, dass Z r = 0 die einzige lineare
kekK

Relation des Systems {# | k € K} ist. [
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Der Raum 7, Wxo, hat die Dimension —1 + #K. Nach Lemma 2.5.
folgt:

2.6. PROPOSITION. Die Vektoren t, spannen den Tangentialraum
T\u WKoh auf-

2.7. Ist e ein Eckpunkt von P, so verstehen wir unter der Blume von e die
Vereinigung aller Dreiecke d € A, welche e als Eckpunkt enthalten.

Sei G = G(P) die Menge der Abbildungen g:|P |~ E (wobei E die
euklidische Ebene bedeute und | P| die Standard-Realisierung von P), die
folgende Eigenschaften erfiillen:

e g ist affin auf jedem Dreieck von | P/,
e g ist injektiv auf jeder Blume von | P|.

Jedes g € G liefert uns eine Abbildung y: S — [0, n] wenn wir jedem Sektor
seinen Winkel in g(| P|) C E zuordnen. Da g injektiv auf jeder Blume ist, ist
y sogar kohdrent, also in Wg,,. Wir haben so eine ,, Winkelablesefunktion ‘¢

A: G Wy

Ein Winkelsystem y € A(G) nennen wir geometrisch realisierbar und die
Teilmenge von Wy, , mit dieser Eigenschaft, Wg,. Fir v € W, bezeichnen
wir mit g,:| P |~ E eine geometrische Realisierung des Winkelsystems y und
mit P, C E das Bild von g,.

Eine Realisierung, wie im Satz von Fary, liefert ein y € Wgq,, welches
sogar in Wge, liegt. Darum ist auch Wg,, nicht leer. Nicht jedes y € I/I(}Koh
liegt aber in Wge,. Betrachten wir in E etwa die Triangulierung von Figur 3.
Neun dieser gleichseitigen Dreiecke bestimmen das zehnte Dreieck vollstandig.
Ist v das Winkelsystem dieser Triangulierung und k eine Kante, so liegt
v + et nur fir € = 0 in Wge,.

FIGUR 3

Fiir jede Kante fiihrt die ,,Scherung‘‘#; aus Wgeo hinaus
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Wir haben in RS nun drei Mengen W D Wgon O Wageo definiert. Die
Menge W, sitzt als Teilmenge kompliziert in Wgon. Wir kennen fur Wee,
keine direkte Beschreibung. Im nédchsten Paragraphen definieren wir auf W
eine Funktion L. Es zeigt sich, dass die Einschrdankung von L auf Wk, genau
einen kritischen Punkt in I/I(}Koh hat. Dieser liegt auch in Wg,, und das
1-Skelett seiner geometrischen Realisierung entspricht dem Graphen einer

Kreispackung.
3. DIE FUNKTION L: W —R

3.1. Wir definieren fir y e W

w(s)/2

4) Ly)= -2 Y s log tan Y d¢

sesS
0

Die so definierte Funktion L: W R ist auf W stetig und auf W analytisch.
Es sei bemerkt, dass sich das Integral

o/2
I(a):= — logtan $d¢ « € [0, n]
0

mit der Lobatchevsky-Funktion & : R R ausdriicken lidsst. Sei & ) :
5

— j log | 2 sin ¢ | @9, dann gilt

1(5) = g(ﬁ) + g(” _5) .
2 2

Mit der Lobatchevsky-Funktion kann man das Volumen hyperbolischer
3-Simplices aus deren Keilwinkel bestimmen. Darum hat auch I(8) und
L ]onh eine geometrische Bedeutung im hyperbolischen 3-Raum H3. In 3.2.
ordnen wir jedem Winkelsystem y € Wy, eine Figur in H3 so zu, dass L(y)
dem Volumen dieser Figur entspricht. Diese geometrische Interpretation von
L|we, wird zum nackten Beweis des Satzes von Andeev jedoch nicht
verwendet.
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