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KREISPACKUNGEN UND TRIANGULIERUNGEN

von Walter BRAGGER!

1. EINLEITUNG

Sei G die Sphére S2 oder die euklidische Ebene E mit der {iblichen Metrik.
Eine Familie abgeschlossener Kreisscheiben in G nennen wir eine
Kreispackung, wenn je zwei dieser Kreisscheiben keinen inneren Punkt
gemeinsam haben. Einer Kreispackung koénnen wir einen simplizialen
1-Komplex zuordnen. Wir nehmen als Eckpunkte (0-Simplices) die
Mittelpunkte der Kreisscheiben und als Kanten (1-Simplices) die geodétischen
Verbindungslinien der Mittelpunkte tangenter Kreisscheiben. Diesen
1-Komplex nennen wir den Graphen der Kreispackung. Im weiteren wollen wir
nur solche Kreispackungen betrachten, deren Graphen 1-Skelette von
endlichen Triangulierungen sind (siehe Fig. 1). Seien K; und K, zwei
simpliziale 1-Komplexe, f eine Bijektion zwischen den Mengen der Eckpunkte
und g eine Bijektion zwischen den Kantenmengen der beiden Komplexe. Das
Paar (f, g) nennen wir eine kombinatorische Aquivalenz, wenn die Bilder
zweier durch eine Kante k& verbundener Eckpunkte, durch die Bildkante
von k verbunden sind. Die 1-Skelette zweier Triangulierungen 7; und T3
nennen wir kombinatorisch &dquivalent, wenn es eine .kombinatorische
Aquivalenz ihrer Eckpunkte- und Kantenmenge gibt. Es gilt der folgende Satz
von Andreev. Die hier zitierte Form mittels Kreispackungen stammt von
Thurston (vgl. [An] und [Tu]:

SATZ VON ANDREEV. Sei T -eine Triangulierung der Sphdre S2,
dann existiert bis auf Mobiustransformation genau eine Kreispackung, deren
Graph kombinatorisch dquivalent zum 1-Skelett von T ist.

Yves Colin de Verdiére hat bewiesen (siehe [CV1]), dass eine Kreispackung
wie im Satz von Andreev dem Minimum eines konvexen, eigentlichen
Funktionals auf Rf (E=Eckpunktmenge von 7) entspricht. Diese Funk-
tionale sind als Integrale iiber geschlossene Differentialformen gegeben.

! Diplomarbeit bei Prof. Dr. Norbert A’Campo. Fiir seine Hilfe mdchte ich ihm an
dieser Stelle herzlich danken.
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Untersucht man diese Funktionale, stosst man rasch auf die Lobachevsky-
Funktion und damit auf das Volumen hyperbolischer 3-Simplices.

Im folgenden wollen wir den Satz von Andreev beweisen, indem wir
Kreispackungen als Maxima konkaver Funktionale auf W = [0, n]S
- (S =Sektorenmenge von T) interpretieren.

FIGUR 1

Beispiel einer Kreispackung

2. VORBEREITUNGEN

2.1. Sei P ein Polyeder, dessen Standard-Realisierung | P | in RE homoo-
morph zu einer Kreisscheibe ist. Seien E = E(P), K = K(P), A = A(P) die
Mengen aller Eckpunkte (0-Simplices), Kanten (1-Simplices) und Dreiecke
(2-Simplices) von P. Jedes 2-Simplex hat drei Winkelsektoren, im folgenden
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