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KREISPACKUNGEN UND TRIANGULIERUNGEN

von Walter Brägger 1

1. Einleitung

Sei G die Sphäre S2 oder die euklidische Ebene E mit der üblichen Metrik.
Eine Familie abgeschlossener Kreisscheiben in G nennen wir eine

Kreispackung, wenn je zwei dieser Kreisscheiben keinen inneren Punkt

gemeinsam haben. Einer Kreispackung können wir einen simplizialen

1-Komplex zuordnen. Wir nehmen als Eckpunkte (O-Simplices) die

Mittelpunkte der Kreisscheiben und als Kanten (1-Simplices) die geodätischen

Verbindungslinien der Mittelpunkte tangenter Kreisscheiben. Diesen

1-Komplex nennen wir den Graphen der Kreispackung. Im weiteren wollen wir

nur solche Kreispackungen betrachten, deren Graphen 1-Skelette von
endlichen Triangulierungen sind (siehe Fig. 1). Seien Kx und K2 zwei

simpliziale 1-Komplexe, / eine Bijektion zwischen den Mengen der Eckpunkte
und g eine Bijektion zwischen den Kantenmengen der beiden Komplexe. Das

Paar (/, g) nennen wir eine kombinatorische Äquivalenz, wenn die Bilder
zweier durch eine Kante k verbundener Eckpunkte, durch die Bildkante
von k verbunden sind. Die 1-Skelette zweier Triangulierungen Tx und T2

nennen wir kombinatorisch äquivalent, wenn es eine ^kombinatorische
Äquivalenz ihrer Eckpunkte- und Kantenmenge gibt. Es gilt der folgende Satz

von Andreev. Die hier zitierte Form mittels Kreispackungen stammt von
Thurston (vgl. [An] und [Tu]:

Satz von Andreev. Sei T eine Triangulierung der Sphäre S2,

dann existiert bis auf Möbiustransformation genau eine Kreispackung, deren
Graph kombinatorisch äquivalent zum 1-Skelett von T ist.

Yves Colin de Verdière hat bewiesen (siehe [CV1]), dass eine Kreispackung
wie im Satz von Andreev dem Minimum eines konvexen, eigentlichen
Funktionais auf RE (E=Eckpunktmenge von T) entspricht. Diese
Funktionale sind als Integrale über geschlossene Differentialformen gegeben.
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Untersucht man diese Funktionale, stösst man rasch auf die Lobachevsky-
Funktion und damit auf das Volumen hyperbolischer 3-Simplices.

Im folgenden wollen wir den Satz von Andreev beweisen, indem wir
Kreispackungen als Maxima konkaver Funktionale auf W [0, n]s
(S Sektorenmenge von T) interpretieren.

Figur 1

Beispiel einer Kreispackung

2. Vorbereitungen

2.1. Sei P ein Polyeder, dessen Standard-Realisierung \P \ in RE homöo-

morph zu einer Kreisscheibe ist. Seien E E(P), K - K{P), À A(P) die

Mengen aller Eckpunkte (O-Simplices), Kanten (1-Simplices) und Dreiecke

(2-Simplices) von P. Jedes 2-Simplex hat drei Winkelsektoren, im folgenden
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