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KREISPACKUNGEN UND TRIANGULIERUNGEN

von Walter BRAGGER!

1. EINLEITUNG

Sei G die Sphére S2 oder die euklidische Ebene E mit der {iblichen Metrik.
Eine Familie abgeschlossener Kreisscheiben in G nennen wir eine
Kreispackung, wenn je zwei dieser Kreisscheiben keinen inneren Punkt
gemeinsam haben. Einer Kreispackung koénnen wir einen simplizialen
1-Komplex zuordnen. Wir nehmen als Eckpunkte (0-Simplices) die
Mittelpunkte der Kreisscheiben und als Kanten (1-Simplices) die geodétischen
Verbindungslinien der Mittelpunkte tangenter Kreisscheiben. Diesen
1-Komplex nennen wir den Graphen der Kreispackung. Im weiteren wollen wir
nur solche Kreispackungen betrachten, deren Graphen 1-Skelette von
endlichen Triangulierungen sind (siehe Fig. 1). Seien K; und K, zwei
simpliziale 1-Komplexe, f eine Bijektion zwischen den Mengen der Eckpunkte
und g eine Bijektion zwischen den Kantenmengen der beiden Komplexe. Das
Paar (f, g) nennen wir eine kombinatorische Aquivalenz, wenn die Bilder
zweier durch eine Kante k& verbundener Eckpunkte, durch die Bildkante
von k verbunden sind. Die 1-Skelette zweier Triangulierungen 7; und T3
nennen wir kombinatorisch &dquivalent, wenn es eine .kombinatorische
Aquivalenz ihrer Eckpunkte- und Kantenmenge gibt. Es gilt der folgende Satz
von Andreev. Die hier zitierte Form mittels Kreispackungen stammt von
Thurston (vgl. [An] und [Tu]:

SATZ VON ANDREEV. Sei T -eine Triangulierung der Sphdre S2,
dann existiert bis auf Mobiustransformation genau eine Kreispackung, deren
Graph kombinatorisch dquivalent zum 1-Skelett von T ist.

Yves Colin de Verdiére hat bewiesen (siehe [CV1]), dass eine Kreispackung
wie im Satz von Andreev dem Minimum eines konvexen, eigentlichen
Funktionals auf Rf (E=Eckpunktmenge von 7) entspricht. Diese Funk-
tionale sind als Integrale iiber geschlossene Differentialformen gegeben.

! Diplomarbeit bei Prof. Dr. Norbert A’Campo. Fiir seine Hilfe mdchte ich ihm an
dieser Stelle herzlich danken.
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Untersucht man diese Funktionale, stosst man rasch auf die Lobachevsky-
Funktion und damit auf das Volumen hyperbolischer 3-Simplices.

Im folgenden wollen wir den Satz von Andreev beweisen, indem wir
Kreispackungen als Maxima konkaver Funktionale auf W = [0, n]S
- (S =Sektorenmenge von T) interpretieren.

FIGUR 1

Beispiel einer Kreispackung

2. VORBEREITUNGEN

2.1. Sei P ein Polyeder, dessen Standard-Realisierung | P | in RE homoo-
morph zu einer Kreisscheibe ist. Seien E = E(P), K = K(P), A = A(P) die
Mengen aller Eckpunkte (0-Simplices), Kanten (1-Simplices) und Dreiecke
(2-Simplices) von P. Jedes 2-Simplex hat drei Winkelsektoren, im folgenden
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Sektoren genannt. Sei S = S(P) die Menge der Sektoren aller Dreiecke von P.
Fir d € A, s € S und e € E definieren wir noch die Inzidenzzahlen

@ 9 1 wenn der Sektor s im Dreieck d liegt
,S) 1=
0 sonst

@9 1 wenn der Sektor s an die Ecke e stdsst
e, s =
0 sonst.

Wir nennen k € K eine Randkante, wenn k nur in einem Dreieck enthalten ist,
sonst eine innere Kante. Sei Kgra.q die Menge der Rand- und Kj, jene der
inneren Kanten. Entsprechend nennen wir diejenigen Eckpunkte, welche in
einer Randkante liegen, Randecken, die restlichen innere Eckpunkte. Seien
Er.da C E und Ey, C E die Mengen der Rand- bzw. inneren Eckpunkte.

Ein Polyeder P wie oben definiert eine topologische Triangulierung der
Kreisscheibe. Jede solche Triangulierung koénnen wir aber auch geradlinig
realisieren. Es gilt der folgende Satz (siehe [Fa]):

SATZ VON FARY. Zu jeder topologischen Triangulierung T der
Kreisscheibe gibt es eine geoddtische Triangulierung T’ eines Polygonsin E,
so dass die 1-Skelette von T wund T’ kombinatorisch dquivalent sind.

2.2. Fir ein Polyeder P mit |P| homdomorph zur Kreisscheibe sei
W = [0, n]5 der Raum der Abbildungen y:S~ [0, ®]. Damit ist W eine
kompakte, konvexe Teilmenge von RS,

Wir betrachten eine Realisierung von P, wie im Satz von Fary, und
bezeichnen den Winkel des Sektors s in dieser Realisierung mit y (s). Dann ist
die Abbildung s~ y(s) ein Element von W mit folgenden Eigenschaften:

Y @)y =n, vdeA

ses

M) Y @)yl =2n, veekE,.

ses

Erfullt ein y € W das Gleichungssystem (1), nennen wir y ein kohdrentes
Winkelsystem. Sei Wx,, die Menge dieser Winkelsysteme. Die Rdume W und
I/I(/)'Koh sind kompakte, konvexe Teilmengen von RS. Wir bezeichnen mit
Wkon = Wkon N (0, ©)5 die Men%e der inneren Punkte der Menge Wy .
Nach dem Satz von Fary ist Wy, nicht leer. Wir zeigen nun, dass das
Gleichungssystem (1) linear unabhingig ist. Die konvexe Menge W, hat
demnach die Dimension #S — #A — #E, = 2(#A) — #E, = — 1 + #K.
Dabei folgt die letzte Gleichheit etwa mit Induktion iiber die Anzahl Dreiecke.

Fir d e A ist die Abbildung s+ (d,s) ein Element von RS. Wir
bezeichnen es mit (d, -). Analog definieren wir (e, -) € RS,
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2.3. LEMMA. Die linear Hiille von {(d,),(e, ")|ecE,de A} im
Vektorraum RS hat die Dimension #A + #E — 1.

Beweis. Sei

) Y aid,-)— Y ble)=0

de A ecF

eine Relation. Wir zeigen, dass alle Koeffizienten dieser Relation gleich gross
sind. Sei d ein Dreieck von P und e eine Ecke, welche in d enthalten ist. Dann
gibt es genau einen Sektor s mit (e, s) = (d, s) = 1. Fiir alle Eckpunkte e’ # e
und Dreiecke d’ # d gilt (e’,s) = (d’,s) = 0. Testen wir (2) mit s folgt
a; = b,. Seien nun e und e’ zwei Eckpunkte, welche mit einer Kante £k € K
verbunden sind. Dann gibt es ein Dreieck d € A, so dass k in d enthalten ist.
Es folgt b, = a; = b,.-. Da sich nun zwei beliebige Eckpunkte e und e’ durch
einen Kantenzug verbinden lassen, muss fiir alle Eckpunktpaare e und e’ gelten
b. = b... Ebenso folgt fiir beliebige d € A und e € E die Gleichheit a;, = b,.

Bezeichnen wir mit 15 die konstante Funktion, welche jeden Sektor s € S
auf 1 € R abbildet, so gilt

IS: Z (d)-): Z (e).)

de A ecFE

und die Relation (2) ist also proportional zur Relation

Y @d)- Y @e)=0. L[

de A eeE

Da fir jedes Polyeder FEgra,q nicht leer ist, ist das System
{(d, ), (e, -)| e € Ey,d e A} linear unabhingig und wir erhalten:

2.4. PROPOSITION. Das Gleichungssystem (1) ist linear unabhdngig.

Als Losungsraum linearer Gleichungen ist Wy, konvex und fiir jeden
inneren Punkt vy ist der Tangentialraum 7\, Wy, somit unabhingig von y. Es
gilt

Y (@, s)u(s) =0, vdeA
seS

(3) T\ll WKoh = {veRS und
Y (e, s)u(s) =0, VeekE,

ses
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Wihlen wir auf | P | eine Orientierung, so induziert diese eine Orientierung auf
jedem Dreieck von |P l Sei nun k eine Kante mit den anliegenden Sektoren
S1» S2, 83 und sy, so dass beziiglich der Orientierung von | P | die Numerierung
wie in Figur 2 vorliegt.

FiGur 2

Numerierung fiir eine innere Kante und eine Randkante

Fir k € Ky, sei #, € T,,Wgq, der Vektor

—1 wenn s =5, oder s = s,
1(s) : = I wenn s = s; oder s = s,
0 sonst

und fir k£ € Kgang S€l % € Ty Wyon der Vektor

—1 wenn s = s
L(s) : = 1 wenn s =g,
0 sonst .

2.5. LEMMA. Das System {t;|k € K} hat den Rang —1 + #K.

Beweis. Sei

Z aipty = 0

kekK

eine Relation und seien &, k* € K die beiden Schenkel eines Sektors s. Dann gilt

0 = ( Z aktk) (S) = i—(ak—akr) .

kek

Testen wir so mit allen Sektoren sehen wir, dass Z r = 0 die einzige lineare
kekK

Relation des Systems {# | k € K} ist. [
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Der Raum 7, Wxo, hat die Dimension —1 + #K. Nach Lemma 2.5.
folgt:

2.6. PROPOSITION. Die Vektoren t, spannen den Tangentialraum
T\u WKoh auf-

2.7. Ist e ein Eckpunkt von P, so verstehen wir unter der Blume von e die
Vereinigung aller Dreiecke d € A, welche e als Eckpunkt enthalten.

Sei G = G(P) die Menge der Abbildungen g:|P |~ E (wobei E die
euklidische Ebene bedeute und | P| die Standard-Realisierung von P), die
folgende Eigenschaften erfiillen:

e g ist affin auf jedem Dreieck von | P/,
e g ist injektiv auf jeder Blume von | P|.

Jedes g € G liefert uns eine Abbildung y: S — [0, n] wenn wir jedem Sektor
seinen Winkel in g(| P|) C E zuordnen. Da g injektiv auf jeder Blume ist, ist
y sogar kohdrent, also in Wg,,. Wir haben so eine ,, Winkelablesefunktion ‘¢

A: G Wy

Ein Winkelsystem y € A(G) nennen wir geometrisch realisierbar und die
Teilmenge von Wy, , mit dieser Eigenschaft, Wg,. Fir v € W, bezeichnen
wir mit g,:| P |~ E eine geometrische Realisierung des Winkelsystems y und
mit P, C E das Bild von g,.

Eine Realisierung, wie im Satz von Fary, liefert ein y € Wgq,, welches
sogar in Wge, liegt. Darum ist auch Wg,, nicht leer. Nicht jedes y € I/I(}Koh
liegt aber in Wge,. Betrachten wir in E etwa die Triangulierung von Figur 3.
Neun dieser gleichseitigen Dreiecke bestimmen das zehnte Dreieck vollstandig.
Ist v das Winkelsystem dieser Triangulierung und k eine Kante, so liegt
v + et nur fir € = 0 in Wge,.

FIGUR 3

Fiir jede Kante fiihrt die ,,Scherung‘‘#; aus Wgeo hinaus
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Wir haben in RS nun drei Mengen W D Wgon O Wageo definiert. Die
Menge W, sitzt als Teilmenge kompliziert in Wgon. Wir kennen fur Wee,
keine direkte Beschreibung. Im nédchsten Paragraphen definieren wir auf W
eine Funktion L. Es zeigt sich, dass die Einschrdankung von L auf Wk, genau
einen kritischen Punkt in I/I(}Koh hat. Dieser liegt auch in Wg,, und das
1-Skelett seiner geometrischen Realisierung entspricht dem Graphen einer

Kreispackung.
3. DIE FUNKTION L: W —R

3.1. Wir definieren fir y e W

w(s)/2

4) Ly)= -2 Y s log tan Y d¢

sesS
0

Die so definierte Funktion L: W R ist auf W stetig und auf W analytisch.
Es sei bemerkt, dass sich das Integral

o/2
I(a):= — logtan $d¢ « € [0, n]
0

mit der Lobatchevsky-Funktion & : R R ausdriicken lidsst. Sei & ) :
5

— j log | 2 sin ¢ | @9, dann gilt

1(5) = g(ﬁ) + g(” _5) .
2 2

Mit der Lobatchevsky-Funktion kann man das Volumen hyperbolischer
3-Simplices aus deren Keilwinkel bestimmen. Darum hat auch I(8) und
L ]onh eine geometrische Bedeutung im hyperbolischen 3-Raum H3. In 3.2.
ordnen wir jedem Winkelsystem y € Wy, eine Figur in H3 so zu, dass L(y)
dem Volumen dieser Figur entspricht. Diese geometrische Interpretation von
L|we, wird zum nackten Beweis des Satzes von Andeev jedoch nicht
verwendet.

0
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FIGUR 4

d
Die Funktionen 7: [0, t] = R und — I(a): (0, ) = R
da

3.2. Sei Q3,6 € (0, n) ein idealer 3-Simplex im hyperbolischen 3-Raum mit
den Keilwinkeln 8/2, (m — 8)/2 und ©/2. Dann gilt (vgl. hierzu [Mi]):

Voluy, (Qs) = g(g) 4 g(”—zﬁ) - 1(5) .

Fir ein euklidisches Dreieck d mit den Winkeln a, B, ¥ konstruieren wir in
H3 ecine Figur A(d) folgendermassen:

Wir wéhlen fiir H?® das Model C X R, und schreiben 0H? = C U {0 }.
Seien A4, B, C die Eckpunkte von d C C, M der Mittelpunkt des Inkreises und
A’, B, C’ die Fusspunkte der Lote von M auf die Seiten von d (siehe Figur 5).

C

FIGUR 5

Zerlegung eines Dreiecks

i
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Die Menge A(d) ist die konvexe Hiille in H? der Punkte 4, B, C, M, A’, B’,
C’, ». Sie zerlegt sich in 6 Simplices und zwar je zwei Kopien Q,, Qg, Q,.

Somit gilt fiir y € I/I(}Koh
L{y) = Z VOlHyp(x(dw)) )

de A

wobei d,, C C eine Realisierung von d ist, deren Winkel y entsprechen. Fur
Yy € W nicht in Wg,, kennen wir keine geometrische Bedeutung fir L(vy).

3.3. Seien ¢ und y zwei verschiedene Randpunkte von W, dann sei

[0, y]:= {tW“‘(l—t)(D}te[o,l] cCw.

Wir nennen [¢, y] maximal, wenn {ty + (1 — )@}, cr N W = [0, v].

3.4. LEMMA. Seien @ und vy zwei verschiedene Randpunkte von W,
so dass [¢,vy] maximal ist. Dann bildet die Funktion

tHdL(t + (1 =0)y)
= ® v

das Intervall (0,1) homdbomorph auf R ab.

Beweis. Betrachten wir nochmals die Funktion I7:[0, n]+— R. Fiir
a € (0, ) gilt

1) = - Llog [tan i Lo :
— L) = — —10g an — un e a) = — .
da. 2 2 do? 2 sin o

Sei nun y:[0, 1]~ W mit y(¢): =t + (1 — #)y. Dann gilt fir ¢ e O, 1):

d

(5) — Loy =— Y log (tan W)(S)) (0 =) (5)
dt se S’ 2
d2 . 2

©) Loy= _ (¢ —v)?(s)

<0,
ses sin (Y(2)(s))
wobei S = {s € S|p(s) # y(s)} ist. Nach (5) gilt:

dr>

-1

. [d , d
lim (E(LOY)(”) = 4+ o und Ilim (Zt(LOy)(t)) = — 00,

... d —
Somit ist Zt (L ©v) surjektiv und wegen (6) streng monoton. [
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d
Fir t=0 und #=1 ist ;;(LOY) in R nicht definiert. Wegen (7)

definieren wir aber

—d(Lo ) | + d —d(L )|
=0 = ®© un o =1 = — .
dt THe=0 dt Lt

Nach Lemma 3.4. ist die Funktion L |, ,: [0, w] = R konkav und nimmt
in den Randpunkten ¢ und y kein Maximum an. Wir erhalten somit:

3.5. PROPOSITION. Die Funktion L: W= R st auf W streng konkav.
Sei im Folgenden Lk, die Einschrankung von L auf Wgg,.
3.6. SATZ. Die Funktion Lygn: Wxon 2> R nimmt auf der k%mpakten

Menge Wy, genau ein Maximum an. Dieses Maximum liegt in Wy, und
ist dort der einzige kritische Punkt.

1 #e-) Y

FIGUR 6

Die Einschrdnkung von L auf das Intervall [, y]

Beweis. Die Teilmenge Wgo, von W ist selbst wieder konvex und die
Randpunkte von Wk, sind auch Randpunkte von W. Die Behauptung folgt
nun nach Lemma 3.4. U
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4. IMMERSIERTE KREISPACKUNGEN

4.1. Satz 3.6. besagt, dass Lgo, auf Wgon genau einen kritischen Punkt n
annimmt. Da die Vektoren {#|k € K} den Tangentialraum 7, Wgon
aufspannen, ist 1 € Wgo, genau dann ein kritischer Punkt, wenn (DLgop )y (%)
= 0, vk € K. Ist k eine Kante von P und n € Wxgon kOnnen wir die Blume
um k, d.h. die Vereinigung aller Dreiecke in welchen k enthalten ist,
geometrisch realisieren.

Bemerkung. Drei Grossen a, b, ¢, welche die Dreiecksungleichungen
erfiillen, definieren bis auf Kongruenz genau ein euklidisches Dreieck. Sei
=(—a+b+c)/2,y=(+a—-b+¢)/2 und z=(+a+b—-c)/2. Dann ist
a=y+2z,b=x+ 2z c=y+ x und wegen den Dreiecksungleichungen sind
x, y und z positiv. Umgekehrt definieren drei positive Grossen x, ¥y und z bis
auf Kongruenz genau ein euklidisches Dreieck. Der Inkreis eines Dreiecks teilt
die Seiten gerade im Verhéltnis x/y, y/z und z/x (siehe Figur 7).

Sei zuerst k € Ky, eine innere Kante. Realisieren wir die Blume um & in E,
erhalten wir zwei Dreiecke d, und d; mit gemeinsamer Kante | k| und den
Winkeln a, B, y bzw. a’, B, y’. Die Inkreise der Dreiecke d, und d, teilen die
Kante | k| im Verhiltnis x/y und x’/y’. Sind R und R’ die Inkreise der
Dreiecke d; und d; so folgt (siehe Figur 8):

X )

FiGgur 7 FIGUR 8

Zwei Dreiecke mit gemeinsamer Kante

0 = (DLxon), (%)

d
= %L(n + Stk) |g=0
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7 7

logtna log t b log t x + log t
= an — — log tan — — log tan — + log tan —
2 © 2 s 2 s 2

R R R’ R’
= log — — log — — log — + log —
X Y X Y
X x’
= — log - + log —,
| y y
I‘und somit
xl
yl

| Realisieren wir in E die beiden an k anliegenden Dreiecke mit gemeinsamer
Kante | k|, so ist (DLgoh), (#) genau dann null, wenn sich die Inkreise der
' beiden Dreiecke beriihren. Somit ist x = x’, ¥y = y" und da R = x - tan(a/2)
gilt fiir die Inkreise R und R’

Ist £k € Kranqg €ine Randkante, so liegt & nur in einem Dreieck d.
Realisieren wir d in E, dann teile der Inkreisradius | k | wieder im Verhéltnis
x/y. Aus (DLKoh)n(z‘k) = 0 folgt dann x/y = 1. Der Inkreis teilt somit | k |
im Verhdiltnis 1:1.

4.2. Wir nennen y € Wk, eine immersierte Kreispackung (sieche Figur 9)
wenn y in Wge, liegt und folgende Bedingungen erfiillt:

— Um jeden Eckpunkt e von P, (Bezeichnungen wie in 2.7.) ldsst sich ein
Kreis C, schlagen, der alle Kanten, die von e ausgehen, schneidet.

— Sind zwei Ecken e und e’ durch eine Kante verbunden, so sollen sich die
Kreise C, und C,- beriihren.
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FIGUR 9

Beispiel einer immersierten Kreispackung

4.3. LEMMA. Fiir n € Wkon sSind folgende Aussagen dquivalent:
(1) n ist eine immersierte Kreispackung,
(i) (DLxon), (t) = 0, VK € Kiy.

Beweis. (i) = (ii): Sei n eine immersierte Kreispackung. Dann schneiden
die Kreise C, die Seiten der Dreiecke von P, in den Beriihrungspunkten der
Inkreise. Haben zwei Dreiecke von P, eine gemeinsame Kante | k |, so fallen
auf | k| die Beriihrungspunkte der Inkreise zusammen und es folgt

(DLgan), (1) = 0.

(if) = (i): Sei e ein innerer Eckpunkt und seien d!, ..., d” die Dreiecke der
Blume um e wobei d’ und d‘*! die Kante k; gemeinsam haben. Wir realisieren
erst d! in E. Dann realisieren wir die Dreiecke d2, ..., d" so, dass d; mit a’f;l
genau die Kante | k;_, | gemeinsam hat.
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~ Sei df]“ eine weitere Realisierung von d!, welche aber mit d; die Kante
| k, | gemeinsam hat. Da die Winkelsumme um jeden Eckpunkt 27 betrigt,
‘haben die Dreiecke df] und d;’” keinen inneren Punkt gemeinsam (siehe
Figur 10).

s S e e e iy
dn+1
4 /
1
dy dy ,
dn
FiGgur 10

Die Blume um einen inneren Eckpunkt

Wegen (DLxon), (%,;) = 0 beriihren sich die Inkreise der Dreiecke d; und
d,"'. Bezeichnen wir mit R; den Inkreisradius des Dreiecks d} und mit a; den
Winkel von d; der an die Ecke e stdsst, dann folgt

R, R, R, R, 3 tan (0;/2) tan (a.,/2) _ 1
Rn +1 Rz R3 Rn +1 tan (0.2/2) tan ((11/2)

Folglich fallen die Dreiecke d,, d;*' zusammen und die Blume um e schliesst
sich. Da sich die Blume um jeden inneren Eckpunkt schliesst, ist n immersiert
realisierbar. Haben zwei Dreiecke eine gemeinsame Kante, so beriihren sich in
P, C E ihre Inkreise. Wir konnen somit um jeden Eckpunkt von P, einen
Kreis schlagen, der die Kanten in den Beriihrungspunkten der Inkreise
'schneidet. Diese Kreise erfiillen die Kreispackungseigenschaft 4.2. [

44 SATZ. Fiir jedes Polyeder P mit |P| homdomorph zur Kreis-
' scheibe existiert genau eine immersierte Kreispackung, bei der alle Randkreise

gleich gross sind.
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Beweis. Nimmt Lg.,, das Maximum auf Wge, in mn an, so gilt
(DLKoh)n(tk) = 0 vk € K, nur fir n. Aus (DLKoh)n(tk) = 0, Vk € Kj, folgt die
Kreispackungseigenschaft und wegen (DLxon), (%) =0 Vk € Krana sind alle
Randkreise gleich gross. [J

4.5. BEWEIS DES SATZES VON ANDREEV. Sei 7 eine Triangulierung der
Sphire S2 und e, e,, e; die Eckpunkte eines Dreiecks von 7. Die Gruppe der
Mobiustransformationen operiert dreifachtransitiv auf der Sphére. Mit einer
Mobiustransformation und anschliessender stereographischer Projektion
konnen wir e, e;, e; auf die Eckpunkte eines gleichseitigen euklidischen
Dreiecks so abbilden, dass alle andern Ecken von 7 im Inneren dieses Dreiecks
liegen. Wir erhalten so eine Triangulierung eines gleichseitigen Dreiecks in E.
Nach Satz 4.4. existiert dann genau eine immersierte Kreispackung, deren
Graphen das 1-Skelett einer Triangulierung eines wiederum gleichseitigen
Dreieckes ist (alle drei Randkreise haben denselben Radius). Darum ist diese
Kreispackung sogar in E eingebettet (siche Figur 11). Transformieren wir auf
S2 zurlick erhalten wir eine Kreispackung auf der Sphire. Die Eindeutigkeit
bis auf Mobiustransformation folgt aus der Eindeutigkeit im euklidischen Fall.

A

FIGur 11
Kreispackung auf der Sphire
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5. RANDWINKEL

Sei y € Wgo, und e € Eg,,q eine Randecke. Dann ist

p(w,e) = Y (e s5)y(s) =0

seSs
der Randwinkel von von y an der Ecke e. Es gilt:

Yow(s) = n(#A) = 2n(#En) + Y p(v, o)

ses e € ERand

Aus #A — #K + #E = 1 folgt:
—on = m(—1+2#A— #E,— #K) = n(#A— #E— #Ey)

=—1+#K

= ) (p(y,0)—m)

€ € Epand

und somit erhalten wir eine Version von Gauss-Bonnet:

2n=Y (n—p(v,e)

€€ ERand

5.1. POLYEDER MIT FESTEN RANDWINKELN. Die Funktion p: Er.g P R,
ist ein Randwinkelsystem, wenn gilt

2n= ) (n-p(e).

€ € ERand

Ist p ein Randwinkelsystem, dann ist
Weon:={w € Wkon | p(w,€) = p(e), Ve € Erana} -

O
Obwohl nach dem Satz von Fary die Menge Wy, nicht leer ist, kann
O
W%, durchaus leer sein. Die Triangulation von Figur 12 etwa kann nicht
geradlinig realisiert werden, wenn wir die Randwinkel fest lassen.

FIGUR 12
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O
5.2. SATZ. Sei p:EpamaP R, ein Randwinkelsystem und sei W
nicht leer. Dann gibt es genau eine immersierte Kreispackung m € Weon-
Das Polyeder P, ist in E eingebettet, wenn p(e) < m, Ve € Erand-

Beweis. Der Raum W?, ist eine kompakte, konvexe Teilmenge von w.
Fir y € VI(}}'}oh ist sein Tangentialraum T, W%, unabhingig von y. Es gilt:

Y (@ s)wE) =0, vdeA
seS

(8) TW Wkon = (U € RS und
Y (e s)u(s) =0, VeekE
ses

Nach Lemma 2.3. hat W%, die Dimension 1 + 2# A — #E = # Ky,, wobei
die letzte Gleichheit wieder mit Induktion iiber die Anzahl Dreiecke folgt.

Fiir jede innere Kante k ist der Vektor #, Tangentialvektor von Wy, .
Nach Lemma 2.5. spannen diese den Tangentialraum T, Wg,, auf.

Sei L%, die Binschridnkung von L auf W§, . Dann hat wegen Lemma 3.4.
die konkave Funktion L%, genau einen kritischen Punkt n. Da
(DLKoh)n(tk) =0, Vke K, ist n wegen Lemma 4.3. eine immersierte
Kreispackung. [l
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