
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 38 (1992)

Heft: 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: KREISPACKUNGEN UND TRIANGULIERUNGEN

Autor: Brägger, Walter

DOI: https://doi.org/10.5169/seals-59490

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-59490
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


KREISPACKUNGEN UND TRIANGULIERUNGEN

von Walter Brägger 1

1. Einleitung

Sei G die Sphäre S2 oder die euklidische Ebene E mit der üblichen Metrik.
Eine Familie abgeschlossener Kreisscheiben in G nennen wir eine

Kreispackung, wenn je zwei dieser Kreisscheiben keinen inneren Punkt

gemeinsam haben. Einer Kreispackung können wir einen simplizialen

1-Komplex zuordnen. Wir nehmen als Eckpunkte (O-Simplices) die

Mittelpunkte der Kreisscheiben und als Kanten (1-Simplices) die geodätischen

Verbindungslinien der Mittelpunkte tangenter Kreisscheiben. Diesen

1-Komplex nennen wir den Graphen der Kreispackung. Im weiteren wollen wir

nur solche Kreispackungen betrachten, deren Graphen 1-Skelette von
endlichen Triangulierungen sind (siehe Fig. 1). Seien Kx und K2 zwei

simpliziale 1-Komplexe, / eine Bijektion zwischen den Mengen der Eckpunkte
und g eine Bijektion zwischen den Kantenmengen der beiden Komplexe. Das

Paar (/, g) nennen wir eine kombinatorische Äquivalenz, wenn die Bilder
zweier durch eine Kante k verbundener Eckpunkte, durch die Bildkante
von k verbunden sind. Die 1-Skelette zweier Triangulierungen Tx und T2

nennen wir kombinatorisch äquivalent, wenn es eine ^kombinatorische
Äquivalenz ihrer Eckpunkte- und Kantenmenge gibt. Es gilt der folgende Satz

von Andreev. Die hier zitierte Form mittels Kreispackungen stammt von
Thurston (vgl. [An] und [Tu]:

Satz von Andreev. Sei T eine Triangulierung der Sphäre S2,

dann existiert bis auf Möbiustransformation genau eine Kreispackung, deren
Graph kombinatorisch äquivalent zum 1-Skelett von T ist.

Yves Colin de Verdière hat bewiesen (siehe [CV1]), dass eine Kreispackung
wie im Satz von Andreev dem Minimum eines konvexen, eigentlichen
Funktionais auf RE (E=Eckpunktmenge von T) entspricht. Diese
Funktionale sind als Integrale über geschlossene Differentialformen gegeben.

1

Diplomarbeit bei Prof. Dr. Norbert A'Campo. Für seine Hilfe möchte ich ihm an
dieser Stelle herzlich danken.
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Untersucht man diese Funktionale, stösst man rasch auf die Lobachevsky-
Funktion und damit auf das Volumen hyperbolischer 3-Simplices.

Im folgenden wollen wir den Satz von Andreev beweisen, indem wir
Kreispackungen als Maxima konkaver Funktionale auf W [0, n]s
(S Sektorenmenge von T) interpretieren.

Figur 1

Beispiel einer Kreispackung

2. Vorbereitungen

2.1. Sei P ein Polyeder, dessen Standard-Realisierung \P \ in RE homöo-

morph zu einer Kreisscheibe ist. Seien E E(P), K - K{P), À A(P) die

Mengen aller Eckpunkte (O-Simplices), Kanten (1-Simplices) und Dreiecke

(2-Simplices) von P. Jedes 2-Simplex hat drei Winkelsektoren, im folgenden



KREISPACKUNGEN UND TRIANGULIERUNGEN 203

Sektoren genannt. Sei S S(P) die Menge der Sektoren aller Dreiecke von P.

Für d e À, 5 e S und e e E definieren wir noch die Inzidenzzahlen

wenn der Sektor 5 im Dreieck d liegt

10 sonst
(d, s)

(e, s):

H:
1 wenn der Sektor s an die Ecke e stösst

0 sonst

Wir nennen k e K eine Randkante, wenn k nur in einem Dreieck enthalten ist,

sonst eine innere Kante. Sei ^Rand die Menge der Rand- und Kïn jene der

inneren Kanten. Entsprechend nennen wir diejenigen Eckpunkte, welche in
einer Randkante liegen, Randecken, die restlichen innere Eckpunkte. Seien

ERand C E und Ein C E die Mengen der Rand- bzw. inneren Eckpunkte.
Ein Polyeder P wie oben definiert eine topologische Triangulierung der

Kreisscheibe. Jede solche Triangulierung können wir aber auch geradlinig
realisieren. Es gilt der folgende Satz (siehe [Fa]):

Satz von Fary. Zu jeder topologischen Triangulierung T der
Kreisscheibe gibt es eine geodätische Triangulierung T' eines Polygons in E,
so dass die 1-Skelette von T und T' kombinatorisch äquivalent sind.

2.2. Für ein Polyeder P mit | P \ homöomorph zur Kreisscheibe sei

W= [0,7t]5 der Raum der Abbildungen \j/ : S [0, n]. Damit ist W eine

kompakte, konvexe Teilmenge von R5.

Wir betrachten eine Realisierung von P, wie im Satz von Fary, und
bezeichnen den Winkel des Sektors 5 in dieser Realisierung mit Dann ist
die Abbildung 5^11/(5) ein Element von W mit folgenden Eigenschaften:

£ (dy s)\|/(s) 71 vd e A
s e S

£ (e, s)v|/(s) 2n Ve e E]n
S e S

Erfüllt ein i|/ e WdasGleichungssystem (1), nennen wir \|/ ein kohärentes
Winkelsystem. Sei WKoh die Menge dieser Winkelsysteme. Die Räume W und
WKoh sind kompakte, konvexe Teilmengen von Rs. Wir bezeichnen mit
WKoh WKohr\(0,7t)s die Menge der inneren Punkte der Menge WKoh.
Nach dem Satz von Fary ist WKoh nicht leer. Wir zeigen nun, dass das
Gleichungssystem (1) linear unabhängig ist. Die konvexe Menge hat
demnach die Dimension #S -#A- #E,„ 2(#A) - #Eln 1 + #K.
Dabei folgt die letzte Gleichheit etwa mit Induktion über die Anzahl Dreiecke.

Für de A ist die Abbildung s*->(d,s) ein Element von Rs. Wir
bezeichnen es mit d,•).Analog definieren wir •) e Rs.
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2.3. Lemma. Die linear Hülle von {(d, • (e, • | e e E, d e A} im
Vektorraum Rs hat die Dimension #A + #E - 1.

Beweis. Sei

(2) X aAd, •) - X •) 0
de A e e £

eine Relation. Wir zeigen, dass alle Koeffizienten dieser Relation gleich gross
sind. Sei d ein Dreieck von P und e eine Ecke, welche in d enthalten ist. Dann

gibt es genau einen Sektor 5 mit (e, s) (d, s) 1. Für alle Eckpunkte e' ^ e

und Dreiecke d'^ d gilt (e\ s) (d',s) - 0. Testen wir (2) mit 5 folgt
ad — be. Seien nun e und e' zwei Eckpunkte, welche mit einer Kante k e K
verbunden sind. Dann gibt es ein Dreieck d e Ä, so dass k in d enthalten ist.
Es folgt be ad — be>. Da sich nun zwei beliebige Eckpunkte e und e' durch
einen Kantenzug verbinden lassen, muss für alle Eckpunktpaare e und e' gelten
be be'. Ebenso folgt für beliebige de A und e e E die Gleichheit ad - be.

Bezeichnen wir mit 15 die konstante Funktion, welche jeden Sektor s e S

auf 1 e R abbildet, so gilt

1,S X (d, •) X (e, •)
de A eeE

und die Relation (2) ist also proportional zur Relation

X (d. )-Xte -) 0.
de A e e E

Da für jedes Polyeder ERdLnd nicht leer ist, ist das System

{{d, - {e, - | e e EYn, d e A} linear unabhängig und wir erhalten:

2.4. Proposition. Das Gleichungssystem (1) ist linear unabhängig.

Als Lösungsraum linearer Gleichungen ist WKoh konvex und für jeden

inneren Punkt \j/ ist der Tangentialraum T¥WKoh somit unabhängig von \j/. Es

gilt

(3) E\j/ ff^Koh — VE RS

£ (d, s)v(s) 0, Wd e A
s e S

und

X (e,s)u(s) 0, Ve e
s e S
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Wählen wir auf | P | eine Orientierung, so induziert diese eine Orientierung auf
jedem Dreieck von | P |. Sei nun k eine Kante mit den anliegenden Sektoren

Si, s2, s3 und s4, so dass bezüglich der Orientierung von | P | die Numerierung
wie in Figur 2 vorliegt.

Numerierung für eine innere Kante und eine Randkante

Für k e Kln sei tk e T^WKoh der Vektor

I
- 1 wenn s sY oder s s4

1 wenn s s3 oder s s2

0 sonst

und für k e ÄRand sei tk e TxvWKoh der Vektor

:

- 1 wenn s
1 wenn ^
0 sonst

2.5. Lemma. Das System {tk\ k eK)hatden Rang - 1+ # K.

Beweis. Sei

X] &ktk ~ 0
k g K

eine Relation und seien k,k'eKdiebeiden Schenkel eines Sektors 5. Dann gilt

0 akh^ is) ±{ak-ak')

Testen wir so mit allen Sektoren sehen wir, dass X h 0 die einzige lineare
k 6 K

Relation des Systems {tk\ k eK)ist.
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Der Raum TyWKoh hat die Dimension -1 + #K. Nach Lemma 2.5.

folgt:

2.6. Proposition. Die Vektoren tk spannen den Tangentialraum
Ty W^oh auf.

2.7. Ist e ein Eckpunkt von P, so verstehen wir unter der Blume von e die

Vereinigung aller Dreiecke d e À, welche e als Eckpunkt enthalten.
Sei G= G(P) die Menge der Abbildungen g:|P|^E (wobei E die

euklidische Ebene bedeute und \P \ die Standard-Realisierung von P), die

folgende Eigenschaften erfüllen:

• g ist affin auf jedem Dreieck von | P |,

• g ist injektiv auf jeder Blume von | P |.

Jedes g e G liefert uns eine Abbildung \|/ : S - [0,7t] wenn wir jedem Sektor
seinen Winkel in g(| P |) C E zuordnen. Da g injektiv auf jeder Blume ist, ist

ij/ sogar kohärent, also in WKoh. Wir haben so eine ,,Winkelablesefunktion"

A:GWKoh.
Ein Winkelsystem y e A (G) nennen wir geometrisch realisierbar und die

Teilmenge von WKoh, mit dieser Eigenschaft, WGqo. Für \\f e WGeo bezeichnen

wir mit : | P | E eine geometrische Realisierung des Winkelsystems \|/ und
mit Pv C E das Bild von

Eine Realisierung, wie im Satz von Fary, liefert ein \j/ e WKohi welches
o

sogar in WGe0 liegt. Darum ist auch WGt0 nicht leer. Nicht jedes y e WKoh

liegt aber in WGeo. Betrachten wir in E etwa die Triangulierung von Figur 3.

Neun dieser gleichseitigen Dreiecke bestimmen das zehnte Dreieck vollständig.
Ist \j/ das Winkelsystem dieser Triangulierung und k eine Kante, so liegt

\|/ + s tk nur für 8 0 in WGeo.

Figur 3

Für jede Kante führt die Scherung " tk aus WGt0 hinaus
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Wir haben in R5 nun drei Mengen W D W^0h D WGqq definiert. Die

Menge WGco sitzt als Teilmenge kompliziert in WKoh. Wir kennen für WGeo

keine direkte Beschreibung. Im nächsten Paragraphen definieren wir auf W
eine Funktion L. Es zeigt sich, dass die Einschränkung von L auf WKoh genau

o
einen kritischen Punkt in WKoh hat. Dieser liegt auch in WGeo und das

1-Skelett seiner geometrischen Realisierung entspricht dem Graphen einer

Kreispackung.

3. Die Funktion L:W-+ R

3.1. Wir definieren für y e W

(4) L(V) -£
s s S

I Vis)/2 ^

I log tan û dû

Die so definierte Funktion L: R ist auf W stetig und auf W analytisch.
Es sei bemerkt, dass sich das Integral

a/2

/(a) : log tan û dû a e [0, n]

mit der Lobatchevsky-Funktion : R R ausdrücken lässt. Sei 5f(5) :

6

- | log | 2 sin û | dû, dann gilt

7TO sr(|) t
Mit der Lobatchevsky-Funktion kann man das Volumen hyperbolischer

3-Simplices aus deren Keilwinkel bestimmen. Darum hat auch 1(8) und
L I^Koh eine geometrische Bedeutung im hyperbolischen 3-Raum H3. In 3.2.
ordnen wir jedem Winkelsystem \|/ e B^oh eine Figur in H3 so zu, dass L(\j/)
dem Volumen dieser Figur entspricht. Diese geometrische Interpretation von
L
verwendet.

wird zum nackten Beweis des Satzes von Andeev jedoch nicht
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Figur 4

d
Die Funktionen /: [0, %] H- R und — 1(a) : (0,7t) H- R

da

3.2. Sei Q5, 5 e (0,7t) ein idealer 3-Simplex im hyperbolischen 3-Raum mit
den Keilwinkeln 6/2, (n - ô)/2 und 7t/2. Dann gilt (vgl. hierzu [Mi]):

Fo/Hyp(Q6) 7(ô) •

Für ein euklidisches Dreieck d mit den Winkeln a, ß, y konstruieren wir in
H3 eine Figur X(d) folgendermassen:

Wir wählen für H3 das Model C X R+ und schreiben 6H3 Cu{oo).
Seien A, B, C die Eckpunkte von d C C, M der Mittelpunkt des Inkreises und
A B', C' die Fusspunkte der Lote von M auf die Seiten von d (siehe Figur 5).

c
/r-

B'IC
M

/ K.

AC' B
Figur 5

Zerlegung eines Dreiecks
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Die Menge X(d) ist die konvexe Hülle in H3 der Punkte A, B, C, M, A \ B',
C, oo. Sie zerlegt sich in 6 Simplices und zwar je zwei Kopien Qa, Qß, Qy.

o
Somit gilt für y e WKoh

L(y)= X VolHyp(Ud,))
de A

wobei dy C C eine Realisierung von d ist, deren Winkel \|/ entsprechen. Für

i\f e W nicht in WKoh kennen wir keine geometrische Bedeutung für L(\|/).

3.3. Seien cp und \p zwei verschiedene Randpunkte von W, dann sei

[<P, V|/] î= {Ap + (1 - 0<P}c s [0,1] c

Wir nennen [cp, cp] maximal, wenn {Ap + (1 - t)cp}, e R n W [cp, \p].

3.4. Lemma. Seien cp und cp zwei verschiedene Randpunkte von W,
so dass [cp, ip] maximal ist. Dann bildet die Funktion

+ (1 ~
dt

das Intervall (0, 1) homöomorph auf R ab.

Beweis. Betrachten wir nochmals die Funktion [0,7t] ^ R. Für
a e (0, jt) gilt

d 1 / a\ 1

— 1(a) — log tan - und 7(a)
da 2 \ 2) da2 2 sin a

Sei nun y:[0,1] i-» Wmit y(t) :tcp + (1 - t)\p. Dann gilt für t e (0,1):

(5) J,L°y =~ + l0" ('a'1 —j ll'p VMD)

,6) Ç-P'y- Edt2 seS'Sin (y(t)(s))
wobei S'{5 e S|cp(s) * \p(s)} ist. Nach (5) gilt:

lim (Z,OY)(t)] +oo und lim
<~o\dt ,_j

Somit ist —-(Loy) surjektiv und wegen (6) streng monoton.
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d
Für t 0 und t 1 ist — (Loy) in R nicht definiert. Wegen (7)

dt
definieren wir aber

d
| d

— (Loy) |, 0 + oo und — (Loy) 1 - oo
dt dt

Nach Lemma 3.4. ist die Funktion L 1^,^: [(p, \p] ^ R konkav und nimmt
in den Randpunkten (p und \j/ kein Maximum an. Wir erhalten somit:

3.5. Proposition. Die Funktion LrfF^R ist auf W streng konkav.

Sei im Folgenden LKoh die Einschränkung von L auf WKoh.

3.6. Satz. Die Funktion LKoh: WKoh -> R nimmt auf der kompakten
o

Menge WKoh genau ein Maximum an. Dieses Maximum liegt in lVKoh und
ist dort der einzige kritische Punkt.

>
1 j(r-r) r

Figur 6

Die Einschränkung von L auf das Intervall [(p, \j/]

Beweis. Die Teilmenge WKoh von W ist selbst wieder konvex und die

Randpunkte von WKoh sind auch Randpunkte von W. Die Behauptung folgt
nun nach Lemma 3.4.
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4. IMMERSIERTE KREISPACKUNGEN

4.1. Satz 3.6. besagt, dass LKoh auf WKoh genau einen kritischen Punkt r|

annimmt. Da die Vektoren {tk\k e K) den Tangentialraum

aufspannen, ist p e WKoh genau dann ein kritischer Punkt, wenn (.DLKoh)n(tk)

0, vk e K. Ist k eine Kante von P und p e WKoh können wir die Blume

um k, d.h. die Vereinigung aller Dreiecke in welchen k enthalten ist,

geometrisch realisieren.

Bemerkung. Drei Grössen a} b, c, welche die Dreiecksungleichungen
erfüllen, definieren bis auf Kongruenz genau ein euklidisches Dreieck. Sei

x - a + b + c)/2, y (+ a - b + c)/2 und z {+ a + b - c)/2. Dann ist

a y + z, b x + z, c y + x und wegen den Dreiecksungleichungen sind

x, y und z positiv. Umgekehrt definieren drei positive Grössen x, y und z bis

auf Kongruenz genau ein euklidisches Dreieck. Der Inkreis eines Dreiecks teilt
die Seiten gerade im Verhältnis x/y3y/z und z/x (siehe Figur 7).

Sei zuerst k e Kin eine innere Kante. Realisieren wir die Blume um k in E,
erhalten wir zwei Dreiecke und mit gemeinsamer Kante | k | und den
Winkeln a, ß, y bzw. a', ß', y'. Die Inkreise der Dreiecke d^ und d'^ teilen die
Kante | Ä: | im Verhältnis x/y und x7^'. Sind R und R' die Inkreise der
Dreiecke und d^ so folgt (siehe Figur 8):

* y

Figur 7 Figur 8

Zwei Dreiecke mit gemeinsamer Kante

0 (DL^\(tk)
à
~ — + L

0
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a ß a7 ß'
log tan log tan log tan h log tan —

2 2 2 2

R R R' R'
log log log — + log —

x y x' y'
x x'- log - + log —
y y'

und somit

X X

y y'

Realisieren wir in E die beiden an k anliegenden Dreiecke mit gemeinsamer
Kante \k\, so ist (DLKoh)^(tk) genau dann null, wenn sich die Inkreise der
beiden Dreiecke berühren. Somit ist x x', y y' und da R x • tan(a/2)
gilt für die Inkreise R und R'

a
tan —

R 2

R' a'
tan —

2

Ist k e KRand eine Randkante, so liegt k nur in einem Dreieck d.

Realisieren wir d in E, dann teile der Inkreisradius | k | wieder im Verhältnis

x/y. Aus (DLkoh)n(4) 0 folgt dann x/y 1. Der Inkreis teilt somit | k |

im Verhältnis 1:1.

4.2. Wir nennen \j/ e WKoh eine immersierte Kreispackung (siehe Figur 9)

wenn \j/ in WGe0 liegt und folgende Bedingungen erfüllt:

j— Um jeden Eckpunkt e von Pw (Bezeichnungen wie in 2.7.) lässt sich ein

Kreis Ce schlagen, der alle Kanten, die von e ausgehen, schneidet.

I— Sind zwei Ecken e und e' durch eine Kante verbunden, so sollen sich die

Kreise Ce und Ce> berühren.



KREISPACKUNGEN UND TRIANGULIERUNGEN 213

Figur 9

Beispiel einer immersierten Kreispackung

4.3. Lemma. Für rj e WKoh sind folgende Aussagen äquivalent:

(i) r| ist eine immersierte Kreispackung,

(ii) (£>1,^)^(4) — 0) Vk c Kïn.

Beweis, (i) => (ii): Sei r| eine immersierte Kreispackung. Dann schneiden

die Kreise Ce die Seiten der Dreiecke von in den Berührungspunkten der

Inkreise. Haben zwei Dreiecke von eine gemeinsame Kante | k |, so fallen
auf | k | die Berührungspunkte der Inkreise zusammen und es folgt
(DLKoh\(tk) 0.

(ii) => (i): Sei e ein innerer Eckpunkt und seien d\ ...fdn die Dreiecke der
Blume um e wobei d7 und di+1 die Kante kt gemeinsam haben. Wir realisieren
erst dl in E. Dann realisieren wir die Dreiecke d2, dn so, dass d^ mit d^1
genau die Kante \kt-i \ gemeinsam hat.
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Sei d^ + l eine weitere Realisierung von d\ welche aber mit d^ die Kante
| kn | gemeinsam hat. Da die Winkelsumme um jeden Eckpunkt 2tt beträgt,
haben die Dreiecke d\ und d^

+ l keinen inneren Punkt gemeinsam (siehe

Figur 10).

Wegen (Z)LKoh)Tl(4/) 0 berühren sich die Inkreise der Dreiecke und
dl*1. Bezeichnen wir mit Rt den Inkreisradius des Dreiecks d\ und mit a, den

Winkel von d\ der an die Ecke e stösst, dann folgt

Ri Ri R2 Rn tan(cxi/2) tan(a„/2)

Folglich fallen die Dreiecke dn^1 zusammen und die Blume um e schliesst

sich. Da sich die Blume um jeden inneren Eckpunkt schliesst, ist r\ immersiert
realisierbar. Haben zwei Dreiecke eine gemeinsame Kante, so berühren sich in

P^CE ihre Inkreise. Wir können somit um jeden Eckpunkt von Pn einen

Kreis schlagen, der die Kanten in den Berührungspunkten der Inkreise
schneidet. Diese Kreise erfüllen die Kreispackungseigenschaft 4.2.

4.4. Satz. Für jedes Polyeder P mit | P \ homöomorph zur
Kreisscheibe existiert genau eine immersierte Kreispackung, bei der alle Randkreise

gleich gross sind.

Figur 10

Die Blume um einen inneren Eckpunkt

1

Rn +1 Ri R3 Rn +1 tan (a2/2) tan(a!/2)
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Beweis. Nimmt LKoh das Maximum auf WKoh in rj an, so gilt
(DLKoh)^(tk) 0 Vk e K, nur für r|. Aus {DLKoh)^{tk) 0, Vk e Kln folgt die

Kreispackungseigenschaft und wegen (DL^0h)n{tk) 0 Vk e KRmd sind alle

Randkreise gleich gross.

4.5. Beweis des Satzes von Andreev. Sei T eine Triangulierung der

Sphäre S2 und e\,e2, e3 die Eckpunkte eines Dreiecks von T. Die Gruppe der

Möbiustransformationen operiert dreifachtransitiv auf der Sphäre. Mit einer

Möbiustransformation und anschliessender stereographischer Projektion
können wir ex, e2, e3 auf die Eckpunkte eines gleichseitigen euklidischen
Dreiecks so abbilden, dass alle andern Ecken von T im Inneren dieses Dreiecks

liegen. Wir erhalten so eine Triangulierung eines gleichseitigen Dreiecks in E.
Nach Satz 4.4. existiert dann genau eine immersierte Kreispackung, deren

Graphen das 1-Skelett einer Triangulierung eines wiederum gleichseitigen
Dreieckes ist (alle drei Randkreise haben denselben Radius). Darum ist diese

Kreispackung sogar in E eingebettet (siehe Figur 11). Transformieren wir auf
«S2 zurück erhalten wir eine Kreispackung auf der Sphäre. Die Eindeutigkeit
bis auf Möbiustransformation folgt aus der Eindeutigkeit im euklidischen Fall.

Figur 11

Kreispackung auf der Sphäre
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5. Randwinkel

j Sei \j/ e WKoh und e e ERand eine Randecke. Dann ist

P(V>e) E (e,s)\|/(s) ^ 0
s e S

der Randwinkel von von \j/ an der Ecke e. Es gilt:

X \|/(j) n(#A) 2k(#£,i„) + X p(v»c)
1

S 6 S e e £Rand

Aus #A - #K + #E 1 folgt:

- 271 7t(—1+2#A — #E\n #K) 7C(#A — #E— #E'in)

- 1 + #A"

I (p(¥,e)-t)
e e -^Rand

und somit erhalten wir eine Version von Gauss-Bonnet :

27t £ (7i-p(v|/,e))
« e ^Rand

5.1. Polyeder mit festen Randwinkeln. Die Funktion p: iiRand R+
ist ein Randwinkelsystem, wenn gilt

2jc Y, (n-p(e))
e 6 ^Rand

Ist p ein Randwinkelsystem, dann ist

WpKoh :{V|/ WKohI p(V, e) p(e) Ve e ^„d}
O

Obwohl nach dem Satz von Fary die Menge WKoh nicht leer ist, kann
o

JF£0h durchaus leer sein. Die Triangulation von Figur 12 etwa kann nicht

geradlinig realisiert werden, wenn wir die Randwinkel fest lassen.

Figur 12
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5.2. Satz. Seip:ERmd R+ ein Randwinkelsystem und sei WKoh

nicht leer. Dann gibt es genau eine immersierte Kreispackung ri e W^oh.

Das Polyeder P„ ist in E eingebettet, wenn < ve e

Beweis. Der Raum WpKoh ist eine kompakte, konvexe Teilmenge von

Für y e #£oh ist sein Tangentialraum W9Koh unabhängig von \|/. Es gilt:

-£ (d, =0, VC? A

(8) T^W^ioh — v e R5
5 6 5

und

X e,s)v(s) 0, Ve
s e S

Nach Lemma 2.3. hat W^oh die Dimension 1 + 2#A - #E #Kïn, wobei

die letzte Gleichheit wieder mit Induktion über die Anzahl Dreiecke folgt.

Für jede innere Kante k ist der Vektor tk Tangentialvektor von W^oh.

Nach Lemma 2.5. spannen diese den Tangentialraum T^W^oh auf.

Sei L£oh die Einschränkung von L auf W^oh. Dann hat wegen Lemma 3.4.

Da
Koh-

die konkave Funktion L£oh genau einen kritischen Punkt r|.

(DLKoh)11(4) — 0, vAreKIn, ist Tj wegen Lemma 4.3. eine immersierte

Kreispackung.
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