Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 38 (1992)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: THE MEAN SQUARE OF THE RIEMANN ZETA-FUNCTION ON THE
LINE =1

Autor: Balasubramanian, R. / Ivi, A/ Ramachandra, K.

Rubrik

DOI: https://doi.org/10.5169/seals-59479

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-59479
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

14 R. BALASUBRAMANIAN, A. IVIC AND K. RAMACHANDRA

‘The error term in (2) is best possible, and for the range 1/2 < ¢ < 3/4 the
above asymptotic formula has been considerably refined by K. Matsumoto [5]
(see also [4]).

It seems that the case ¢ = 1 in (1) has not received much attention in the
literature. The aim of this paper is to discuss this problem. We shall prove the
following

THEOREM. Let for T > 1 the function R(T) be defined by

3) §T|C(1 + if) |2dt=C(2)T—7tlogT+ R(T) .
Then

(4) R(T) = O(log?3T(log log T)'/3) ,

() ?R(t)dt = O(T) ,

 and

(6) f R2(t)dt = O(T(loglog T)*)) .

1

Remarks. In view of (4) it is seen that R(7T') represents the error term in
the mean square formula for {(s) on the line o = 1.

One often takes the lower limit of integration in (1) as zero. However, in
our case (¢ = 1) this cannot be done, since {(s) has a pole at s = 1. If in (3)
we take some other positive number as the lower limit of integration, then
obviously the value of R(T) will be changed by a constant only.

The method used in the proof of our theorem may be used to evaluate mean
values of certain other zeta-functions on the line ¢ = 1. These will be dealt
~with elsewhere.

The upper bound in (4) contains information about the order of {(1 + iT).
Namely, from the general inequalities proved in [1] and [2] it may be deduced
that

T+8

k
Ck(1 + iT) < log?*T(loglog T)V3 | | (1 +it) | dt + 1

T+38

for any fixed integer £k > 1 and & = (loglog 7/log T)?/3. Hence we obtain
C(1 +iT) < log?3T(loglog T)1/3 .
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This bound is close to the classical bound of 1. M. Vinogradov (see Ch. 6
of [3])

¢ +iT) < log?3T,

which for more than 30 years is the sharpest one, and follows from (19).

In view of (5) it seems plausible to conjecture that, as 7' — oo,

T

{ R2(t)dt ~ AT

1

for some A > 0.

Acknowledgement. We are very much indebted to the referee for his
remarks concerning the proof of (4).

Proof of the Theorem. We start from the simplest approximate functional
equation for ((s) (see Th. 1.8 of [3]). Namely, for 0 <oy <o <2,
x>|t|/=®, s =0 + it, we have

xl—-S
)= ) n—5+ + O(x~9°).
n<x S —
For ¢t < T this gives
T 1
(7 Cl+ity= ) n-l-it+—40[=].
ngT 174 T

Since | z| 2 = zz we obtain from (7)

0 g ¢ T it
1 : ngT

n<T I 1 n nt

n<T T

lT
+O(—7:j( ) n—l-”|dt) +O(logT)
1

The main terms in the asymptotic formula (3) come from the first integral on
the right-hand side of (8). To see this one can use the well-known Montgomery-
Vaughan theorem for mean values of Dirichlet polynomials (see [6], also [7]
and Ch. 5 of [3]), which says that

n<N n<N n<N

T 2 2 2
) il Y an-t| dt=T ¥ |a,] +0(Z L lanl)
0
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for arbitrary complex numbers a,, 7 > 0 and N > 1. Therefore by the
- Cauchy-Schwarz inequality and (9) we have

T /2
a f| X n—l—ffldt<T1/2(§| Y n'- w\ dt = O(T) .
1 n<T ngT

We also have

¢ it dt

(11) ) (—) — = O(loglogT) .
1 n<T \ N nt

To prove (11), let 2 < H < T/2 be a parameter. Then

5 )

nt n<T(1-1/H) 1

T (T\" dt 1 T/n) r
+ Z n—-l S (_) w— = Z - _(__..L__.._
TA-1/Hy<n<T 1 n ! n<ra-wvm n |itlog(T/n)
T (T/n)i'dt logT
+ | .( ) }+O( y g )
1 it*’log(T/n) TU-1/Hy<n<T N
1 logT
O esim) O i)
n<T(1-1/m) hlog(T/n) H
(=115 dx logT T du logT
< + +1= + + 1
1 xlog (T/x) H (1-1/m-1 ulogu H

= loglog T — logl 1 : 1 4 : + 1 < loglog 7
glog glog glog
for H = log T. Thus from (8), (10) and (11) it follows that

| Y n-t-w |2du + O(loglogT) .

nT

»—-L——qi\]

: i 2
(12) §lea+in | du=
f 1

| Further we have

j 2 2 2
(13) SlEn-“ul =Sl2n-"u|du—5|zn-““ldu
n<T ngT n<T

fand observe that by the Euler-Maclaurin summation formula (or by (7)) we
‘have, for 0 < u < 1,
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T 1\ 1-7T-™
Yy n-t-iv=| x‘l"'“dx+'y+0(u)+0(?) =—

n<T 1 u

1
+y+0(u)+0(}) ,

where y = 0.5772157... is Euler’s constant. Therefore

1 _ T —iu |2 1 | _ T—iu
§| Z n“"'“!zdu= S ! T2 | du—-ZYRe{iS —————du}

0 ngT 0 u 0 u

L 1 —cos(ulogT L sin(ulogT)
a4 +om=2 | TR Dy | EES dut o)
0 u 0 “
{ 5.3 e /2 (siny) 2
A ((”l‘ng)/z) du + O(1) = 2log T (—U-) dv + O(1)
0 U ’

=nlogT+ OQ),

°°(sinu)2 T
T A
0 ) 2

since

In (12) — (14) we replace T by ¢, and suppose that T < ¢ < 27. From (7) we

have
, 1
Y  noitis O(—) )

T<n<gt T

Hence from the definition of R(T'), given by (3), it follows that for 7' < f < 2T
we have

0 n<T

1 2
(15) R(t) = | ( | Y noi-i| —C(Z)) du + O(loglogT) .

This is the fundamental formula that will be used in the proof of (4) and (6).
We start with the proof of (4), taking in (15) # = T and writing

Y nolth= Y+ ¥ o+ ) 221+22+Z3,

ngT n<N N<n<2N 2N<n<gT

say, where

(16) N = exp(Clog?? T(loglog T)!/3)
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with a suitable constant C > 0. We have

T 2

n-1-# | du
i1 X I
T N

<n<gT

Do =

T 2
17) §|22+ Y,l| du=

(m/n)iT — (m/n) - 'T

N<ngT N<m=#=n<T 2imnlog(m/n)

For the terms n < m < 2n in the second sum on the right-hand side of (17)
we may put m = n + h, producing a sum of the form

d+h/n)T—-1+ h/n)-'T
(18) ) ) : ,
1<h<T max(N,hy<n<T 2i(n+ h)nlog(l+ h/n)

To estimate the inner sum over n we shall apply the Vinogradov-Korobov
estimate for exponential (zeta) sums. In its original form this says that

Clog*M

(19) Y mit< Mexp| —
log?2¢t

M<m< M <2M

1
) (MOQMSECZ‘ZZ‘O) g

and a proof (with C = 10-°) may be found in Ch. 6 of [3]. However, it is
easily seen that the method of proof of (19) yields also

20 h\ Clog3’M
(20) Y (1+—-) <Mexp(——£—

Lt=21
M<mgM <2M m log?t

1
) (M0<M1<£

with some absolute C > 0, provided that 1 < A < m. Therefore (20) gives
h iT
Y 1+ - < N'log 4T (NSN <N'"K2N'LT),
N <n<g N’ n

provided that the constant C in (16) is sufficiently large. It follows by partial
summation that the sum in (18) is < log~27. Moreover the terms with
m > 2n in (17) may be estimated directly by applying (19) to the sum over m,
so that (17) becomes

T 2
21) fIY,+ X, de=T ¥ »n-2+ O(og—27T).
0 N<n<T

Similarly we find that
T
(22) f Y n-t-w Y m-t+iugy <log 2T

-T n<N IN<m<KT

for N given by (16) and C sufficiently large. Now by (15) we have
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T

23) R(T) = §T| Y . +Y,+ ), |2du ~ ¢@)T + O(loglog T) ,

N | -

and we shall use the elementary identity

TS S N RN A L N L o N
+2Re(2123).

By (9) the first two terms above contribute

T ) n-2+ O(logN)

ng< N

to (23), while by (21) and (22) the contribution of the third and fourth term
will be
T Y n-%+ O(log 2T).

N<n<gT
Therefore (23) gives
R(T)Y=T Y n2*-¢Q2)T + O(logN) + O(log 2T)

1<n<T
={(Q)T — C(2)T + O(log N) = O(log??T(loglog T)'/3) ,

which proves (4). With a little more effort one could presumably remove the
log log — factor in (4).
To prove (5) it suffices to prove
2T

(24) | R@)dt=0(T),
T
and then to replace 7 by 2 /T and sum over j = 1, 2, ... . For this purpose

the error term in (15) is too large. Thus we use first (8), (10) and (14) to write,
for T <t < 2T,

- (15,0 s) oo § 3, (2)°2)

ngT inu
+ O(1),

which is more precise than (15). We square out the first sum above and then
integrate termwise, noting that interchanging m and n we have

L= 3 —— = % —— - -,

i<mzn<T iMmnlog(m/n) 1<m=+n<T1 inmlog (n/m)

hence ), = 0. This gives, for T < ¢ < 2T,
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m/n)it 1 t\ “ d
@) Ry= ¥ T ope{loy (H)
i1<m=n<T IMnlog(m/n) I 1 ngT \N un

+ O(1) .
Then we integrate (25) to obtain

2T (m/n)iT _ (m/n)ZiT

| R(t)dt = y

T 1<mz=n<T mnlog?(m/n)

] & ¥ t\ “ dudt
—2Re{—.5 f X (—) .
A 1 ngT

} + O(T) .
n

nu

But the modulus of the double sum above does not exceed

= y + y

1<n<m<T mnlOgZ(M/n) 1<n<m<T,n<m/2 1<n<m<T,n>m/2
1 1
<log?T+ ) ) <log’T+ ) )
n<T n<mg2n mzlogz(m/n) n<T n<m<2n (m‘“f’l)z
<T,

and it remains to estimate

t)iu du dt ZjT I°§T (t)fu du dt

w1l

n

+25T§ > (f)iududt+2£§ y (E)"”dudt

nu T 1 ngT/2 \ N nu

T logT n<T/2 n nu 1 T/2<n<T \H nu
=L+ 5L+ 1,
say. We have
1 log T 2T ¢ iu du
L= _5(5(_) g
n<T/2 B 1 T \H u
] logT t/n)i 2T 2r t/n)iv
= — s _(__)__ + L)_ dll dt
n<T/2 N1 iulog(t/n) Ir T iu*log(t/n)

log T 1 < log?T
T n<1/2 nlog(T/n) T

<

’
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¢ t t/ iu
+ @/n) du} dt
log T log T iuzlog(t/n)

12 (t/m)
b= L o} {iulog(t/n)

ng7T/2 BT

T
< Y <T,
n<1/2 nlog(T/n)log T

2B L () )

max(u, T) n u

2T i (ZT)iu+1 _ (max(u, T))iu+1

X )

T/2<n<T 1 u(iv+1)

Il

du

1
<T Y —<T,

T/2<n<T N

and (24) follows.
It remains yet to prove (6), which follows from

2T

(26) | R2(t)dt = O(T(loglog T)*) .

T
(aa’) it
) b—
R¥(t) < Y <
e+b<T,cxd<T abedlog(a/b)log(d/c)

= )y + Y. +

ad = be 0 <|log(ad/bec)| < T—1log4T |log(ad/bey| > T—1log?T

+ O((loglog T)?) = Sy + Si + S, + O((loglog T)?) ,

We use (25) and (11) to obtain

+ O((loglog T)?)

say. On integrating we obtain
2T

[ S,ar

T

L ()

a#+zb<T,c+d<T,|log(a c -llog4T | a
*d< T llogtad/be)| > T ogTzabca’log (— log ﬁ' log Elil
b C bc

<

T 1 p;
- ( ) <T,
log*T \axb<1 ab|log(a/b) |

21
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since an elementary argument easily gives

< log?T

exb<T ab|log(a/b) |

The remaining sums S, and S; are not integrated, but it is sufficient to
show that

27 So< 1,8, < (loglog T)* .
We have

1
Soz Z

ad=be,axb<s T,cxd< T abcdlog(a/b)log(d/c)

1 1 1
))

))

1
;5 ad = be = k,a = b< T log?(a/b) - axb<T log2(a/b) ok, bl k?

1 & 1 J\?
< < - - | =
a#gé Z Z (ab)

r [a,b]2log2(a/b) — ;=1 axs.@r - log2(a/b)

1

1
,—2 Z 2 7 7 V4 "N 2 :O(l).
1 j2 e 1,07 >1,0" 26 log?(a@’/b’) (a’b”)

Y/AN
I8

J

The proof of the other bound in (27) is also elementary, but somewhat more

involved. Write
Si=8+S,

where in S; summation is over a, b,c,d such that 1 <a# b < T,

1<c#d<T,|loga/b|>T-V4 |loge/d| > T4,

ad

O<' log —

< T-'log*T,
bc

and in S; over the remaining values of a, b, ¢, d. Thus

1
Sy < TV?2 D s
a,b,c,d < T;|log(ad/bc)| < T—1log4T abcd
< T2 d(k)d(l)
llog (k/1)| < T—1log4T; k # | < T2 kl

- Now observe that if kK # / > 1 are integers, then

| k‘>1 [+ 1 1
og — /O - Ty
gl s / 21

WV

(28)
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so that
1 k—1 k—1
[ > — Tlog ,| |< 1+~———)'<T‘1log4T.
2 / [
Thus
1 [log*T
S; < T1/2+¢ Z — ( 08 + 1) < T-1/2+2 ¢ |
T/log?T) < I < T2 {2 T

for 0 <& < 1/4. In S, we have either |log(a/b)| < T-1* or |log(d/c) |
< T-V4, If the former holds, then
d

log —
c

| ad | a
og — - log —
gbc gb

< 2T—1/4 ,

so that in S, we have |log(a/b)| < 2T-'4, |log(d/c)| < 2T~'/4, and
also a<b<ac<d<c. Setting a=b+j,,c=d+ j,, we have that
J1 < bT-V4, j, < dT-1*4, and

J log*T
(29) L 2le 22
b d T
since
a lad — bc| | ad — bc| ad — bc
- —| = og |1+ ‘
d bd c bc
d log*T
bc T
Hence
1
Sy < Z

b,d,ji,Jj2 bd]l.lz

*
where ), denotes summation with the conditions b,d < T J1 < bT-V4,
J» < dT V% and (29) satisfied. We have

Sy =8Ss + 8¢,

where trivially

S5 = ¥

— < (loglog T)*,
Tlog=10T < b,d, < T3 jy, ), < log20T bdj,j,
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‘and in S¢ we have (by symmetry) either
i) jr=log®T
or
i) d< Tlog'°T.
From (29) it follows that
bj, g bdlog* T

(30) d- = < —
J1 nT

Suppose that i) holds. Then d — bj,j; ' <j i 'plog*T from (30), hence the
corresponding part of Sg is

1
b VR T 01 ] — g o i~liogdT d
b< T j1<bT J1 J2210g0T J2 |d—-bjaj; |<Chj[ logT

1
< )y - X 1 Y j;’log*T <log=*T.

bgT b ji<bT—1/4 j1 Ja = log20T
If ii) holds, then (30) gives
| bj b
d— £ < — 10g“6T,
J1 J1

and the corresponding contribution to S¢ will be again < log~*T. This
proves (27) and completes the proof of the Theorem.
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