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The error term in (2) is best possible, and for the range 1/2 < o < 3/4 the
above asymptotic formula has been considerably refined by K. Matsumoto [5]

(see also [4]).
It seems that the case g 1 in (1) has not received much attention in the

literature. The aim of this paper is to discuss this problem. We shall prove the

following

Theorem. Let for T> 1 the function R(T) be defined by

r i2
(3) I Ç(1 + it) I dt C(2)T- 7i log T + R(T)

l

Then

(4) R(T) O(log2/3 T(log log T)1/3)

(5) ] R(t)dtO(T)
1

and

T

(6) j R2(t)dt 0(T(loglog TY))
1

Remarks. In view of (4) it is seen that R(T) represents the error term in
the mean square formula for Ç(s) on the line g 1.

One often takes the lower limit of integration in (1) as zero. However, in

our case (o 1) this cannot be done, since ^(s) has a pole at s 1. If in (3)

we take some other positive number as the lower limit of integration, then

obviously the value of R(T) will be changed by a constant only.
The method used in the proof of our theorem may be used to evaluate mean

values of certain other zeta-functions on the line o 1. These will be dealt

with elsewhere.

The upper bound in (4) contains information about the order of Ç(1 + iT).
Namely, from the general inequalities proved in [1] and [2] it may be deduced

that

r+ô k
Ç*(l + iT)<log2/3T(log log T)1/3 I I C(1 + it)

T+ 6

for any fixed integer k ^ 1 and ô (log log 77log T)2/3. Hence we obtain

Ç(1 + iT) < log2/3T(log log 7")1/3
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This bound is close to the classical bound of I. M. Vinogradov (see Ch. 6

of [3])

£(1 + iT) < log2/37\

which for more than 30 years is the sharpest one, and follows from (19).

In view of (5) it seems plausible to conjecture that, as T oo,

T

f R2(t)dt~AT

for some A > 0.

Acknowledgement. We are very much indebted to the referee for his

remarks concerning the proof of (4).

Proofof the Theorem. We start from the simplest approximate functional
equation for Ç(s) (see Th. 1.8 of [3]). Namely, for 0 < o0 ^ o ^ 2,

x ^ 111 / 7i, s o + it, we have

E n~s + — + 0(x~a)
n^x 5—1

For t ^ T this gives

(7)
T~lt I 1 \

Ç(1 + it) E n ~1 ~ u + — + O I — I

n^T it \T)
Since | z \ 2 zz we obtain from (7)

t 9 T

(8) J I CO + it)I dt|| £I dt -2Re
1 1 n^T

1 T

- \ _ IT\ lt dt
£ -

.1 1 n^T\nJ nt

The main terms in the asymptotic formula (3) come from the first integral on
the right-hand side of (8). To see this one can use the well-known Montgomery-
Vaughan theorem for mean values of Dirichlet polynomials (see [6], also [7]
and Ch. 5 of [3]), which says that

(9) HE ann~" \

2

dt TY « K D
0 n < N n ^ TV \n J
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for arbitrary complex numbers an,T> 0 and N^l. Therefore by the

Cauchy-Schwarz inequality and (9) we have

(10) fl (T
2 \ 1/2

f I £ I

1 n ^ T1 n^T

We also have

OD \E(-) "
— O(iogiogr).

i n^T \ n J nt

To prove (11), let 2 ^ H ^ 772 be a parameter. Then

J E (-)"^= I "7
1 n^T \n J Ht n^T(l-l/H) \ \U J t

E «-'!(-)" 7= I 1
r(l-l///) < « < 7" 1 \ n J t n^T(\-l/H) n

(T/nY

it\og(T/ri)

l {T/
1 log (77«)

+ o( i —)
\ r(i-1///)<n^r n

-of E
'

+ o(—1
\n<2"(l-l/Ä) nl\ H ]

7(1 logr [ du log
< j + ——+1= f + -^—+1

1 xlog(77x) H ulogu H

/ 1 \ -1 log T
log log T - log log I 1 - — 1 -f ^ + 1 log log T

for H log T. Thus from (8), (10) and (11) it follows that

T 9 T

(12) j \(,(l+iu)\2du=\IE n~l~iu I O(loglogr)
1 1 n^T

• Further we have

T 2 T 2
1 2

(13) j| Y n~l~iu I du j I Y n~l~iu\ du - \ | Y n~x~iu | du
1 n^T 0 n^T 0 n^T

and observe that by the Euler-Maclaurin summation formula (or by (7)) we

have, for 0 < u < 1,
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_ Y'-iu
£ | x'l~iudx + y + 0(ü) + O | — j :

n^T 1 \TI 1

+ y + 0{u)+ O

where y 0.5772157... is Euler's constant. Therefore

i 2 i 11— T~I2f f
1 - T~iu

I V n-'-'" dudu - 2yRe 1 i j du
o '«tV o m2 I « «

(14) + O(l)
i 1 - cos(wlog T),„ f sin(n log 7")

2 j 2 — du + 2y J du + 1)
0

.4 i smH^ryi)du + om.2logTy(Üti^ + oa)
0 U2 0 \ v

71 log T + 0(1)

since

!(v) dv -2
In (12) - (14) we replace T by t, and suppose that T ^ < 2T. From (7) we

have

S n-1"" o(2\
T<n^t \1 J

Hence from the definition of R(T), given by (3), it follows that for T < t < IT
we have

(15) *(*) î f I E |2 - C(2)) + O(loglogT)
0 \ n^T

This is the fundamental formula that will be used in the proof of (4) and (6).
We start with the proof of (4), taking in (15) t — T and writing

£ n-l~'u £ + £ + X) Xli+ £2+ E3'
n N<n ^ 2N 2N < n ^ T

say, where

(16) N exp(Clog2/3 7\loglog T)1/3)
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with a suitable constant C > 0. We have

(17) f I E2+ E3 I dui î I E I rfu
0 Z -T N<n

T £ n~2 + E
(m/n)iT-

N<nHT N<m*n(,T 2 (ffl/I log (Wî/h)

For the terms n < m < 2# in the second sum on the right-hand side of (17)

we may put m n + h, producing a sum of the form

^ (1 +h/n)iT-(l + h/n)~iT
(is) E E ——-— —.

1 ^ h < T max(N, h) < n ^ T 2i(n + h)n log(l + /z/h)

To estimate the inner sum over n we shall apply the Vinogradov-Korobov
estimate for exponential (zeta) sums. In its original form this says that

v. I Clog3M\ / 1

(19) E m" < MexpI — 1 lM0^M^-t,t^t0
M < m ^ M] < 2M \ log t J \ 2 )•

and a proof (with C - 10 5) may be found in Ch. 6 of [3]. However, it is

easily seen that the method of proof of (19) yields also

- / h\lt t Clog3M\ / 1

X I 1 H— I < M exp \Mq ^ A/i < - ty t ^ i0\
<m^ 2m\ m] \ log2/1 / \ 2 j

(20)

M < m < M\ ^ 2M '

with some absolute C > 0, provided that 1 ^ h < m. Therefore (20) gives

h) iT
s (i+-)

V<n^N" \ nj
< N' log ~4T (N^N' <N"^2N'^ T)

provided that the constant C in (16) is sufficiently large. It follows by partial
summation that the sum in (18) is <log~2T. Moreover the terms with
m > 2n in (17) may be estimated directly by applying (19) to the sum over m,
so that (17) becomes

(21) HL2+E3| du=T E
0 N<n^T

Similarly we find that

T

(22) J E E
-T n 2N< m

for N given by (16) and C sufficiently large. Now by (15) we have
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(23) R(T)=l-JI E,+ I2+ £3 \2 du - U2)T + OQ
2 -T

and we shall use the elementary identity

11.+12+ s3 r= IE.+SJ2- iiaj2+1 E2+E3 r
+ 2Re(I, £3).

By (9) the first two terms above contribute

T £ n~2 + 0(log
n^N

to (23), while by (21) and (22) the contribution of the third and fourth term
will be

T £ n~2 + 0(\og-2T)
N < n^T

Therefore (23) gives

R(T) T £ n~2 - C,(2)T +O(logiV) + 0(log~27')
1 < n ^ T

Ç(2)T- «2)r+ O(logTV) 0(log2/3r(loglogT)1/3)

which proves (4). With a little more effort one could presumably remove the

log log - factor in (4).

To prove (5) it suffices to prove

(24) J R(t)dt0(T)
T

and then to replace T by 2~jT and sum over j 1,2,... For this purpose
the error term in (15) is too large. Thus we use first (8), (10) and (14) to write,
for T ^ f < IT,

du
Rit) \ I I j

2

- C(2)) <fo-2Re j £ (-)
0 \ n^T /

+ Oil)
which is more precise than (15). We square out the first sum above and then

integrate termwise, noting that interchanging m and n we have

£ ; Yj £ - Sw imn\og(m/n) 1 ^ m * n ^ t inm log (n/m)

hence £ 0. This gives, for T ^ t ^ IT,
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^ (m/n)I 2 Re •

f1 ir v- /1 \ iu dw
'

- 1 II-i^m*n^T imn log (m/n) i :

' ^ 1
1 n^T \r2 / 222?

Then we integrate (25) to obtain

2T

\
T
f R(t)dt= I

+ 0(1)

(m/n)iT - (m/n)2iT

- 2 Re

1 mn log2 (m/n)

du dt-1 \ i (-)
I T 1 n^T \nJ nu

+ 0(T)

But the modulus of the double sum above does not exceed

4 _ +
1 ^ n < m ^ T ITin log2 (177/n) I ^ n < m ^ T, n < m/2 1 ^ n < m < T, n ^ /

< \og2T+ £ £ — \
n ^ T n < m ^ 2n m log (171/n)

< T,
and it remains to estimate

«log 2T +£ £
1

n < T n < m < 2n (m n) 2

7 L t t \ du dt 2^ ^ / / \ /i

I J £ ' — - J I '
7* 1 * ^ r \ / «w t \ n^T/2 \n J

+ T i s + T j i (-)
r iogr «<r/2 \«/ flw t i t/2< n \n J

I\ + I2 + I3

c/w dt

nu

say. We have

z 1T(T ^
niT/2 n 1 \ T \n J U I

1 108fr f (//«)'I - 1

n^T/2 n 1 I iu log (//«)

log T

2 T 2T

+ 1 Tt t iu2 log (t/n)

1 iog2r

dt

T n^T/2 n\og(T/n) T
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h, £ 1J '

+ j du
nüT/2nt{iulog(t/n) i0g log7- in2 log(t/«)

T
< I « T,

t/2«log (77«) log r
_ 1 T\ du

bI - J Î - \ dt -T/2<n^T n 1 \max(u,T) \Tl U

v T 1
(2T)'U+1 - (max(w, T))"'+1

2^ J : du
T/2<n^T 1 W(/W + 1)

<T £ - «
T/2 < n ^ T n

and (24) follows.
It remains yet to prove (6), which follows from

dt

(26) f R2(t)0(T(log log )4)
2 T

\
T

We use (25) and (11) to obtain

(ad\ i

w^2(0< L —' + o((iogiogr)2)
a*b^T,c*diT abed log (a/b) log (d/c)

I + I + Iad bc 0 <\\og(ad/bc)\ ^T~l\og*T | log (ad/be) | > T~ Nog4 T

+ O((log log T)2) S0 + Si + S2 + O((log log r)2)

say. On integrating we obtain
2 T

\ S2dt

2 I
a * b ^T, c * d ^T,\ log (ad/be) \ > T~ 1 log4T

1
\ a =£ b ;

(a1/T
/ öd)

w
1

2iT

iabedlog llog(7)

log4/1 \a*b^T ab \\og(a/b)

1 \ 2

^ T,
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since an elementary argument easily gives

1

a±b^T ab I log(ia/b)
< iog2r.

The remaining sums S0 and Si are not integrated, but it is sufficient to
show that

(27) S0 < 1, S\ < (log log T)4

We have

S0
1

ad be, a * b ^t,c # d abed log (a/b) log (d/c)

-Et; l I l
E TT

k
2

ad - be k, a * b ^ T log 2(a/b) a*b^T log a\k,b\k k2

» 1 / / \ 2

« £ < E E
a*b^T [a,b]2log2 (a/b)1 log

a. 1

j= 1 j2a' » 1,4' > l,a' *4' log2(a'/Ô') (fl'b')2

-— (—y
2 (a/b) \ab)

o(1)

The proof of the other bound in (27) is also elementary, but somewhat more

involved. Write

Si S3 + s4,

where in S3 summation is over a, b,c,d such that 1 < a ^ b ^ T,

1 ^c*d^ T,\\oga/b \ ^ T~l/4, | log c/d \ ^ T~l/4

0 <
ad

log —
be

^ r-1iog4r,

and in S4 over the remaining values of a, b, c, d. Thus

S3 < Tl/2
1

^ Tl/

a,b,c,d ^ T;\ \og{ad/bc) \ ^ T~ 1 log4T abed

^ d(k)d(l)
I log (k/l) I ^ T~ 1 log4 T; k ^ I ^ T1 kl

Now observe that if k 3= I ^ 1 are integers, then

(28)
k

lOgy
/ + 1 1

^ log ^ —
/ 21
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so that

1 \ k — l\
- riog-4r, —1

2 /
log

/ Ar— /
(i+— s£ T-'logT.

Thus

s, « r1/24
r/(2iog4r) /2

+ 1 7-1/2 + 28 ^ J

for 0 < s ^ 1/4. In S4 we have either | log (a/b) | ^ T 1/4 or | log (d/c) \

^ r-1/4. If the former holds, then

log -
c

ad a
log log -be b

< 2 T-

so that in S4 we have | \og(a/b) | ^ 2T~1/4, | log(<i/c) | ^ 2T-174, and
also a<b<a,c<d<c. Setting a b + ju c d + j2, we have that

j\ < bT~UA,j2 < dT~l/A, and

(29)

since

7i
_ h

b
~

d

log4r

a c

b d

I ad - be I

bd

\ad - bc\

be

I ad - be \iog (i+ —)
i

ad
log —

be

Hence

logT

1

S4 < I
b. d,j] ,./2 bdjijl

*
where £ denotes summation with the conditions < T;j, -4

h < dT~w4and (29) satisfied. We have

— S5 + S6

where trivially

55
1

nog- mr< b,d,i tjiJ«iog2°r bdjj2
— « (log log
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and in S6 we have (by symmetry) either

i) h > log20!7

or

ii) d^Tlog~l0T.
From (29) it follows that

(30) d.bA<^I.
Ji i T

Suppose that i) holds. Then d - bj2j\l yf'ôlog4T from (30), hence the

corresponding part of S6 is

•« E T E T E E i
b^T b y^ôF-1/4 J1 y2^log20T J2 \d - bj2jj 11 s: Cbj~

1

log4 7 <2

^ Z 7 Z T Z y'2~2l°g4r^ log"47'.
0^7 b 07-1/4 yj y2^log207

If ii) holds, then (30) gives

bji b
d- — < - log-67\j i 7i

and the corresponding contribution to S6 will be again log ~4 T. This

proves (27) and completes the proof of the Theorem.
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