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210 Y. COLIN DE VERDIÈRE

3. Preuve du théorème 3

Le théorème 3 se prouve par des modifications simples de la preuve du

théorème 2. Nous préférons indiquer une preuve rapide qui donne le résultat

pour un c générique.
Cette preuve suppose une hypothèse d'analyticité, aussi nous limiterons-

nous au cas où la métrique riemannienne de X est euclidienne: X est un
polygone strictement convexe du plan euclidien.

Cette preuve s'appuie sur le théorème de Whitney-Menger ([BE]
P. 199, [W]).

Un graphe est dit 3-connexe si on ne le déconnecte pas en ôtant 2 sommets

arbitraires. Le 1-squelette d'une triangulation d'une surface est 3-connexe.

Théorème. Dans un graphe 3-connexe, 2 sommets disjoints peuvent être

joints par 3 chemins sans points communs.

Prouvons maintenant le théorème 3 pour un c générique; il est clair qu'il
suffit de prouver que les triangles O(T) image des triangles de X0 sont non
dégénérés, car l'argument de courbure donne ensuite le résultat final comme
dans le §2.

co

Figure 4
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Montrons que pour tout T, l'ensemble Qr des c pour lesquels 0(7) est

non dégénéré est un ouvert dense:

c'est un ouvert (dépendance continue de cp par rapport à c). Le complémentaire

de cet ouvert est donné par des relations algébriques, car le système

d'équations donnant les coordonnées des images par (p des sommets est un

système linéaire dont les coefficients sont les c/)7.

Il suffit de montrer que cet ouvert est non vide. Par le théorème de

Whitney-Menger, il y a dans r0 3 chemins sans points communs joignant les

3 sommets i, j, k de 7 à 3 points a,b,c du bord de X0 (fig. 4). Il suffit
d'appliquer le théorème au graphe obtenu en ajoutant à r0 2 sommets, un a

dans 7 avec 3 arêtes le joignant aux 3 sommets de 7 et un co joint par des

arêtes à chaque sommet du bord de X0. On applique le théorème aux
sommets a et co.

On considère maintenant les coefficients c tels que les coefficients des arêtes

des 3 chemins tendent vers + oo, les autres restant fixés. A la limite les images
des sommets /, j, k de T vont coïncider avec les images de a, b, c qui sont
3 sommets distincts du bord de A; le triangle 0(7) sera donc non dégénéré.

Maintenant l'ouvert Q nTQT est une intersection finie d'ouverts
denses, donc lui-même un ouvert dense.
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