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210 Y. COLIN DE VERDIERE

3. PREUVE DU THEOREME 3

Le théoréme 3 se prouve par des modifications simples de la preuve du
théoréme 2. Nous préférons indiquer une preuve rapide qui donne le résultat
pour un c générique. ,

Cette preuve suppose une hypothése d’analyticité, aussi nous limiterons-
nous au cas ou la métrique riemannienne de X est euclidienne: X est un
polygone strictement convexe du plan euclidien. '

Cette preuve s’appuie sur le théoreme de Whitney-Menger ([BE]
p. 199, [W]). ‘

Un graphe est dit 3-connexe si on ne le déconnecte pas en Otant 2 sommets
arbitraires. Le 1-squelette d’une triangulation d’une surface est 3-connexe.

THEOREME. Dans un graphe 3-connexe, 2 sommets disjoints peuvent étre
joints par 3 chemins sans points COmMMuUns.

Prouvons maintenant le théoréme 3 pour un ¢ générique; il est clair qu’il

suffit de prouver que les triangles ®(7) image des triangles de X, sont non

- dégénérés, car I’argument de courbure donne ensuite le résultat final comme
dans le §2.

FIGURE 4
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Montrons que pour tout 7, I’ensemble Qr des ¢ pour lesquels ®(T) est
non dégénéré est un ouvert dense:

¢’est un ouvert (dépendance continue de ¢ par rapport a ¢). Le complémen-
taire de cet ouvert est donné par des relations algébriques, car le systeme
d’équations donnant les coordonnées des images par ¢ des sommets est un
systéme linéaire dont les coefficients sont les ¢; ;.

I suffit de montrer que cet ouvert est non vide. Par le théoréme de
Whitney-Menger, il y a dans I'y 3 chemins sans points communs joignant les
3 sommets i,j, k de T & 3 points a, b, c du bord de X, (fig. 4). Il suffit
d’appliquer le théoréme au graphe obtenu en ajoutant a I'y 2 sommets, un a
dans T avec 3 arétes le joignant aux 3 sommets de 7 et un ® joint par des
arétes a chaque sommet du bord de X,. On applique le théoreme aux
somimets o et .

On considere maintenant les coefficients ¢ tels que les coefficients des arétes
des 3 chemins tendent vers + oo, les autres restant fixés. A la limite les images
des sommets 7, j, kK de T vont coincider avec les images de a, b, ¢ qui sont
3 sommets distincts du bord de X; le triangle ®(7) sera donc non dégénéré.

Maintenant P'ouvert Q = Nn+Qr est une intersection finie d’ouverts
denses, donc lui-méme un ouvert dense. (]
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