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TRIANGULATION D’UNE SURFACE 203

Ce dernier théoréme contient comme cas particulier un résultat de Tutte
(ITU]) concernant le cas euclidien: il considere le plongement barycentrique
qui correspond au cas ou tous les ¢; ; valent 1.

Les résultats précédents sont des analogues discrets des théorémes de
Kneser-Choquet ([CH], [KN]) pour le cas des polygones et Jost-Schoen ([J-S])
pour les surfaces compactes.

Nous avons été motivé au départ par le probléme rencontré dans [CV2] de
construire des systémes d’angles cohérents pour une triangulation. Les
théorémes précédents donnent une construction directe de tels systemes.

Questions. 1l serait intéressant de comprendre directement le cas de la
sphére ou le minimum de I’énergie est obtenu pour ¢ constante: toute triangu-
lation y est homotope a une application constante; il est probable qu’il y a
dans ce cas des minimas locaux qui donnent lieu a des triangulations
géodésiques:

Le cas des graphes infinis doit pouvoir étre traité de facon analogue en
considérant des applications d’énergie minimale avec une condition de
Dirichlet a I’infini (voir a ce sujet [TO1] et [TO2]).

Nos théoremes donnent immédiatement [’existence de plongements
géodésiques de tout sous-graphe d’une triangulation, par exemple un graphe
2-cellulaire, i.e. dont les composantes connexes du complémentaire sont des
disques.

Il serait souhaitable de comprendre quelles sont les configurations possibles
d’une application ¢ d’énergie minimale dans une classe d’homotopie contenant
un plongement: une telle application peut ne pas étre un plongement. Y-a-t-il
alors pour I’image du graphe par ¢ d’autres possibilités que d’étre un point
ou une géodésique fermée (cas d’une triangulation d’un petit voisinage
tubulaire d’une telle géodésique)?

1. PREUVE DU THEOREME 1

Pour prouver I’existence, il suffit d’adapter une preuve de ’existence de
géodésiques périodiques dans toute classe d’homotopie d’applications du
cercle S' dans X ([KG] p. 35).

On peut aisément définir ’espace de Sobolev H! (T, X), qui est le sous-
espace des applications continues de I'y dans X, formé des applications dont
la restriction a chaque aréte (i, ;) est d’énergie S(l)“ 0;,;(s) |*ds finie. Les
classes d’homotopie sont alors des fermés de cet espace.
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Montrons que la fonctionnelle E, atteint son minimum sur H' (T, X):
cela résulte classiquement de la compacité des ensembles E.< M

~ pour la topologie de la convergence uniforme (Ascoli: d(@; ;(s),®: i(s"))
< Ce.)/|s"—s]|) et de la semi-continuité inférieure de E. pour cette
~ topologie. ,
Si on a 2 solutions, soient ¢, et ¢,, on peut rendre ’homotopie entre elles
géodésique, au sens que pour chaque ¢, la restriction de ¢, aux arétes de'I'y
est géodésique et que, pour tout sommet i de I'y, ’application ¢ — ¢,(i) est
géodésique. E.(p,) est alors convexe pour ¢ € [1,2] dés que la courbure de X

‘ . 00, 00;, )
est < 0; en effet, si V, ; = o = 5 et K, est la courbure sectionnelle,
4 S

on a la formule de variation seconde:

d2E. :

= ) Cij S (| Ve Vi 1? = Ke(0:,,)) | (Vi ) norm |?) ds
dt? () e A 0

ou (Vi j)norm €St la composante normale a 7°de V; ;.

‘ On en déduit que E.(¢,) est constante, ainsi que les longueurs des images

- par ¢, des aré€tes de I'y (somme constante de fonctions convexes), puis le

résultat annoncé: la distance entre 2 points parcourant a vitesse constante

2 géodésiques ne pouvant &tre constante que si la région balayée est plate et

les 2 géodésiques paralléles et parcourues a la méme vitesse.

Remarquons aussi que les extrémas de £, sont caractérisés par le fait que
les ¢;; sont des arcs géodésiques parameétrés proportionnellement a la
longueur et qu’on a

Vi, Y ¢i;$:;0) =0,

(i, j)e A

ou ¢, ; est supposée telle que ¢; ;(0) = ¢ (7).

2. PREUVE DU THEOREME 2

Dans ce §, ¢ est donnée minimisant E. dans la classe d’homotopie de ¢,.
Pour tout triangle T de X,, la restriction de ¢ au bord de T est homotope
"4 0 et donc se reléve en un ¢ dans le revétement universel X de X, unique a
- automorphisme prés du revétement. L’image 0 (d7T) est le bord d’un triangle
- T, (éventuellement dégeéner€) de X. On prolonge ¢ a X, en ® de facon que,
pour tout triangle 7, on ait ®(7) = n(7T,), ou © est la projection canonique
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