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COMMENT RENDRE GÉODÉSIQUE

UNE TRIANGULATION D'UNE SURFACE?

par Yves Colin de Verdière

Résumé. On montre que toute triangulation d'une surface compacte à

courbure négative ou nulle est rendue géodésique par minimisation de l'énergie

et un résultat analogue pour les polygones convexes du plan. On obtient ainsi

des analogues discrets naturels de théorèmes connus pour les applications

harmoniques de surfaces (Kneser-Choquet, Jost-Schoen) et une extension de

résultats de Tutte.

Etant donnée une surface compacte X munie d'une métrique rieman-

nienne g, on appelle triangulation (topologique) de X, la donnée d'un complexe

simplicial X0, d'un homéomorphisme O0 de X0 sur X dont la restriction (p0

au 1-squelette T0 de X0 soit un plongement C^-par morceaux. On dira que la

triangulation est géodésique si les images des arêtes de T0 par cp0 sont des arcs

de géodésiques pour la métrique g.

Le problème que nous étudions est le suivant: peut-on déformer une

triangulation d'une surface de façon à la rendre géodésique?

La réponse est connue dans le cas euclidien par Fary [FY], Tutte [TU]. La
méthode employée par Tutte est proche de la nôtre mais utilise directement le

critère de planarité de Kuratowski. Un argument global de courbure totale
(Gauss-Bonnet) associé à une étude complète des problèmes de

dégénérescence permet de donner une méthode géométrique directe qui marche sous
la seule hypothèse de courbure ^ 0. L'idée est de considérer chaque arête

comme un élastique avec une constante de couplage arbitraire: la position
d'équilibre, minimum de l'énergie potentielle, de ce filet élastique donne une
solution.

Si on note A l'ensemble des arêtes de T0 et qu'on introduit, sur chaque
arête (ij) e A, un paramètre se [0,1], on note, pour toute application
(p : T0 A, et pour tout c (citj) e (R + \0)A, Ec(tp) l'énergie de (p donnée

par:

Mots clés: triangulation, calcul des variations.
Codes AMS: 05C10, 53C22, 57M20, 57R05, 57R40, 58E10, 58E20.
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£c(<P) \ £ Cij
I

II <p/j(s) II2 ds
2 U,j)eA Jo

où cp/j est la restriction de (p à l'arête (/,y) et (pu désigne la dérivée par
rapport à y.

On souhaite montrer, que sous des hypothèses convenables, si (p minimise

Ec dans la classe d'homotopie d'une triangulation topologique donnée cp0,

alors (p est la restriction à r0 d'une triangulation géodésique isotope à la

triangulation initiale. On a également des résultats dans le cas des variétés à

bord en supposant le bord de la triangulation fixé sur un polygone convexe.

Théorème 1. Dans la classe d'homotopie de (p0, il existe, pour
chaque choix de c, une application (p minimisant Ec. De plus, si la

courbure de g est négative ou nulle, (p est essentiellement unique, au sens

que, si (pi et (p2 sont 2 minimas homotopes, ils le sont par (p, qui est

une courbe de minimas telle que la région balayée par l'image de (p, est

plate et que ckpt/dt est un champ de vecteurs constant le long de chaque

image (p/(T0)-* en particulier les images de T0 par les (p, sont

isométriques. Si la courbure est <0, on a unicité.

Le résultat principal est alors le:

Théorème 2. Si (X,g) est à courbure de Gauss ^ 0, toute (p

minimisant Ec est un plongement géodésique de T0 qui admet un

prolongement (unique à isotopie près) en une triangulation de X isotope
à <f>0-

Nous énonçons maintenant une version à bord: X est un polygone
géodésique strictement convexe d'une surface 1-connexe à courbure ^ 0. On

se donne une triangulation O0 de X, telle que le bord de X0 soit un cycle

(1,2, ...,iV), que O0 envoie les sommets de ce cycle sur les sommets du

polygone (dans le même ordre) et les arêtes (/, / + 1) (1 ^ i ^ AO sur les côtés

de X (avec la convention habituelle N + 1 1).

On a alors le:

Théorème 3. Pour tout choix de ce(R + \0)y4 (où A désigne

maintenant les arêtes intérieures de X0), il existe un (p unique minimisant

Ec à bord fixé et ce (p est la restriction à T0 d'une triangulation
géodésique de X isotope à <3>0.
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Ce dernier théorème contient comme cas particulier un résultat de Tutte

([TU]) concernant le cas euclidien: il considère le plongement barycentrique

qui correspond au cas où tous les cisj valent 1.

Les résultats précédents sont des analogues discrets des théorèmes de

Kneser-Choquet ([CH], [KN]) pour le cas des polygones et Jost-Schoen ([J-S])

pour les surfaces compactes.
Nous avons été motivé au départ par le problème rencontré dans [CV2] de

construire des systèmes d'angles cohérents pour une triangulation. Les

théorèmes précédents donnent une construction directe de tels systèmes.

Questions. Il serait intéressant de comprendre directement le cas de la

sphère où le minimum de l'énergie est obtenu pour (p constante: toute triangulation

y est homotope à une application constante; il est probable qu'il y a

dans ce cas des minimas locaux qui donnent lieu à des triangulations
géodésiques.

Le cas des graphes infinis doit pouvoir être traité de façon analogue en

considérant des applications d'énergie minimale avec une condition de

Dirichlet à l'infini (voir à ce sujet [TOI] et [T02]).
Nos théorèmes donnent immédiatement l'existence de plongements

géodésiques de tout sous-graphe d'une triangulation, par exemple un graphe
2-cellulaire, i.e. dont les composantes connexes du complémentaire sont! des

disques.

Il serait souhaitable de comprendre quelles sont les configurations possibles
d'une application (p d'énergie minimale dans une classe d'homotopie contenant
un plongement: une telle application peut ne pas être un plongement. Y-a-t-il
alors pour l'image du graphe par (p d'autres possibilités que d'être un point
ou une géodésique fermée (cas d'une triangulation d'un petit voisinage
tubulaire d'une telle géodésique)?

1. Preuve du théorème 1

Pour prouver l'existence, il suffit d'adapter une preuve de l'existence de
géodésiques périodiques dans toute classe d'homotopie d'applications du
cercle S1 dans X ([KG] p. 35).

On peut aisément définir l'espace de Sobolev H1 (F0,X), qui est le sous-
espace des applications continues de T0 dans X, formé des applications dont
la restriction à chaque arête (ij) est d'énergie || q>itj(s) ||2ds finie. Les
classes d'homotopie sont alors des fermés de cet espace.
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Montrons que la fonctionnelle Ec atteint son minimum sur T0,X):
cela résulte classiquement de la compacité des ensembles Ec ^ M
pour la topologie de la convergence uniforme (Ascoli: d((pitJ(s)9 (p/jC?'))

^ Cte.]/1 s' - s I) et de la semi-continuité inférieure de Ec pour cette

topologie.
Si on a 2 solutions, soient (pi et cp2, on peut rendre l'homotopie entre elles

géodésique, au sens que pour chaque /, la restriction de (p, aux arêtes de'F0
est géodésique et que, pour tout sommet i de r0, l'application t - cp/(/) est

géodésique. Ec{$t) est alors convexe pour t e [1,2] dès que la courbure de X
9(p / / 8(P/ ;

est ^ 0; en effet, si V-, —- T —- et K2 est la courbure sectionnelle,
dt ds

on a la formule de variation seconde:

d2E f1

—r £ eu(Il vTvu II2 - /rs(<p,.y(j)) I |

dt {i,}) a J0

où (Vij)norm est la composante normale à T de Vij.
On en déduit que Ec{<$t) est constante, ainsi que les longueurs des images

par cpf des arêtes de T0 (somme constante de fonctions convexes), puis le

résultat annoncé: la distance entre 2 points parcourant à vitesse constante
2 géodésiques ne pouvant être constante que si la région balayée est plate et

les 2 géodésiques parallèles et parcourues à la même vitesse.

Remarquons aussi que les extrémas de Ec sont caractérisés par le fait que
les (p/j sont des arcs géodésiques paramétrés proportionnellement à la

longueur et qu'on a

V/ Yj C,,y<p,,y(0) 0
ttJ) 6 A

où (pij est supposée telle que (P/,y(0) (p(z').

2. Preuve du théorème 2

Dans ce §, (p est donnée minimisant Ec dans la classe d'homotopie de cp0.

Pour tout triangle T de X0, la restriction de (p au bord de T est homotope
à 0 et donc se relève en un (p dans le revêtement universel X de X, unique à

automorphisme près du revêtement. L'image (p(6F) est le bord d'un triangle

T(p (éventuellement dégénéré) de X. On prolonge (p à X0 en O de façon que,

pour tout triangle T, on ait 0(7") 7i(rcp), où n est la projection canonique
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de X sur X et que O soit un homéomorphisme local de T sur O(r) si ce

triangle n'est pas dégénéré.

2.a. Courbure

On attribue à chaque angle de chaque triangle de X0 une mesure a avec

0 ^ a ^ 7i qui est celle de l'angle correspondant dans T^ de façon compatible

avec la dégénérescence éventuelle de T^: si les 3 sommets de T<p sont

confondus, les a sont arbitraires de somme 7t. Si le triangle est plat sans côtés

de longueur nulle, 2 des a valent 0, le 3e tt, si le triangle a un côté de

71

longueur nulle prendre les angles ayant ce côté avec la valeur - etc.

On définit alors la courbure de chaque sommet i par K^(i) 2n

- £.<x, où Y/i désigne la somme sur les angles de sommet /.

La formule de Gauss-Bonnet donne, en notant par Kg la courbure de

Gauss de (X,g):

IX (0 + E I Kg

en effet, pour un triangle non dégénéré, on a par Gauss-Bonnet pour un
triangle géodésique que l'intégrale de la courbure vaut la somme des angles
diminuée de tt, alors que pour un triangle dégénéré cette intégrale vaut 0 et

par la convention précédente la somme des angles vaut n. Sommant ces égalités
sur tous les triangles et utilisant la relation d'Euler %(X) nombre de

sommets - nombre d'arêtes + nombre de faces, et le fait que pour une
2

triangulation le nombre de faces vaut les - du nombre d'arêtes, on conclut
3

facilement.
Comme O est homotope à O0, elle est de degré 1 et l'on en déduit qu'elle

est surjective. Comme X est à courbure négative ou nulle et que
|xKg 2n%(X), on a

(1) IXco^O

2.b. Dégénérescence ponctuelle
Soit Xi un sous-complexe connexe complet maximal de X0 tel que la

restriction de O à Xx soit constante, alors:
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Lemme. Xx est simplement connexe.

Preuve. D'abord il est clair que Xx ne contient pas de lacets de X non
homotopes à 0, car un tel lacet deviendrait par cp homotope à 0.

De plus, si X\ n'était pas 1-connexe, on pourrait diminuer Ec en

appliquant la partie de X0 intérieure à X} sur le même point de X que

*2

Figure 1

Soit (iiJiy-Jm) (fig- 1) Ie cycle des sommets de X0 entourant Xx,
x0 (pC*G), X/ (p(i'i) et ai, a2, am les mesures des angles de sommet i
dans Xx et de côtés (/,//), (/,// +1). Si on pose

/ m

K^X,)2n- I a,
/= 1

la formule de Gauss-Bonnet implique

K„(X,)£ K9(i)
f sommet de X\

Soit ut le vecteur unitaire tangent en x0 à l'arc géodésique orienté image

par (p d'une arête (/, it) (i sommet de Xx). Le fait que (p soit critique pour Ec

implique l'existence de constantes C/ > 0 telles que:

i m

£ C,u,0
/= 1
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Il est donc impossible que Kv(Xi) soit > 0; en effet alors l'image par (p du

cycle (/i, z2,//) n'entourerait pas x0 et donc les vecteurs ut seraient tous
dans un demi-plan strict de l'espace tangent en x0 à X (une application
continue du cercle dans lui-même qui n'est pas surjective est telle que tout point
non extrémité de l'image est l'image d'au moins deux points). La relation (1)

implique alors que K^(X0 0, car l'ensemble des sommets de X est la
réunion des sommets des complexes X1 (éventuellement réduits à un point).

Montrons maintenant que la seule possibilité pour X1 est d'être un sous-

graphe linéaire de sommets consécutifs {j\ Ji, ••Jk) tel que l'image des

triangles de X0 ayant au moins un sommet dans Xx par (p soit un segment

géodésique contenant x0 comme point intérieur (fig. 2).

En effet, appelons extrémal tout sommet i de Xx tel que les cônes tangents

en i à X0 et X0\Xx soient connexes et non vides (fig. 3). Alors, on voit

$

Figure 2

*3 x4 X5 Xo Xi X2 X6

Sommets extrémaux de X\ \ o
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que Xx admet au moins 3 sommets extrémaux s'il n'est pas un graphe
linéaire. Montrons que la somme des angles a/ extérieurs à Xx ayant pour
sommet un tel point extrémal est ^ n : en effet dans le cas contraire les vecteurs

Ui correspondants seraient dans un demi-plan strict. Comme la somme totale
des a/ est 2ti, on en déduit le résultat annoncé: il y a au plus 2 sommets
extrémaux et donc Xx est linéaire. Si Xx n'est pas réduit à un sommet unique,
il est clair que la condition d'extréma pour Ec implique que les vecteurs ut
issus des extrémités sont alignés et non tous de même orientation. Les a/
correspondant aux autres sommets de Xx sont alors nuls, puisque la somme
totale est 2tc.

On voit ainsi que la courbure K^{i) est nulle pour tous les sommets de

X0i car les complexes Xx sont soit réduits à un point, soit des sous-graphes
linéaires et dans ce dernier cas, c'est clair que la courbure K(p est nulle en

chaque sommet de Xx. On note que tous les triangles qui ont un sommet au
moins dans Xx sont dégénérés.

2.c. Dégénérescence linéaire

2.cl. Soit X2 un sous-complexe connexe complet maximal de X0 tel que
les images par cp des triangles de X2 soit dégénérés. D'après ce qui précède les

arêtes issues d'un sommet de dX2 ont des images par (p non réduites à un

point: les seuls «Xx» possibles sont intérieurs à des «X2».
Alors on a le:

Lemme. X2 est soit \-connexe, soit contractible sur une courbe de

X0 non homotope à 0. Dans le premier cas, l'image par (p de X2 est

un segment de géodésique, dans le second, c'est une géodésique périodique.

Preuve. Il est clair d'après ce qui précède que l'image de X2 par O est

un arc complet d'une géodésique de X.
En effet si 2 triangles dégénérés ont un côté non réduit à un point en

commun ils sont alignés, il en est de même d'après le paragraphe précédent

s'ils ont un côté réduit à un point.
Les composantes connexes de X0\X2 ne sont pas des disques topologiques

car le bord de ce disque ayant une image géodésique, on peut diminuer Ec en

projetant orthogonalement le disque sur cette géodésique (le faire dans le

revêtement universel).
Si maintenant X2 n'est pas un disque, les composantes connexes du bord

ne sont pas homotopes à 0, mais sont homotopes entre elles dans X, sinon

l'image par cp ne pourrait être une seule géodésique.
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On en déduit que X2 est soit un disque, soit un cylindre, soit un ruban de

Möbius. On élimine aussi facilement le cas où X2 X.

2x2. Cas où X2 est un disque

Dans ce cas la formule de Gauss-Bonnet donne:

E E aext
i 6 9A2 i

où Y<iaext est la somme des mesures des angles extérieurs à X2 au sommet /

de 02ö2

De plus cette somme ne peut valoir que 0, n ou 271, car les angles

intérieurs valent tous 0 ou n et la courbure K9 est 0.

Le cas 0 est impossible car alors les triangles extérieurs de sommet i seraient

dégénérés et donc feraient partie de X2. On voit donc qu'il y a exactement

2 sommets de dX2 où cette somme vaut 271 et les autres où elle vaut n.
Montrons qu'il n'y a pas de sommets de cette sorte:

c'est clair car les arêtes extérieures en / sont situées dans un demi-espace,

ce qui est impossible (condition d'extrémas), sauf si elles sont alignées avec

(p(ô2sT2) auquel cas elles ne sont pas extérieures.

On en conclut que le bord de X2 n'a que 2 sommets, ce qui est

incompatible avec le fait que X0 est un complexe simplicial: il n'y a pas
2 arêtes qui ont les mêmes extrémités.

2x3. Cas où X2 est un cylindre ou un ruban de Möbius

La même technique que précédemment s'étend sans difficultés.
On a donc montré que tous les triangles O(r) sont non dégénérés.

l.d. Fin de la preuve

Il est maintenant clair que O est un homéomorphisme local à l'intérieur
des triangles de X0, il reste à voir que c'est vrai près des sommets et comme
O est de degré 1, on en déduit que c'est un homéomorphisme global.

Comme K^ii) est nul, la seule possibilité pour que O ne soit pas un
homéomorphisme local en i est que l'image des triangles de sommet i soit
contenue dans un angle d'ouverture ^ n. C'est impossible car toutes les arêtes
issues de i devraient avoir une image alignée et donc les triangles de
sommet i seraient dégénérés.
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3. Preuve du théorème 3

Le théorème 3 se prouve par des modifications simples de la preuve du

théorème 2. Nous préférons indiquer une preuve rapide qui donne le résultat

pour un c générique.
Cette preuve suppose une hypothèse d'analyticité, aussi nous limiterons-

nous au cas où la métrique riemannienne de X est euclidienne: X est un
polygone strictement convexe du plan euclidien.

Cette preuve s'appuie sur le théorème de Whitney-Menger ([BE]
P. 199, [W]).

Un graphe est dit 3-connexe si on ne le déconnecte pas en ôtant 2 sommets

arbitraires. Le 1-squelette d'une triangulation d'une surface est 3-connexe.

Théorème. Dans un graphe 3-connexe, 2 sommets disjoints peuvent être

joints par 3 chemins sans points communs.

Prouvons maintenant le théorème 3 pour un c générique; il est clair qu'il
suffit de prouver que les triangles O(T) image des triangles de X0 sont non
dégénérés, car l'argument de courbure donne ensuite le résultat final comme
dans le §2.

co

Figure 4
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Montrons que pour tout T, l'ensemble Qr des c pour lesquels 0(7) est

non dégénéré est un ouvert dense:

c'est un ouvert (dépendance continue de cp par rapport à c). Le complémentaire

de cet ouvert est donné par des relations algébriques, car le système

d'équations donnant les coordonnées des images par (p des sommets est un

système linéaire dont les coefficients sont les c/)7.

Il suffit de montrer que cet ouvert est non vide. Par le théorème de

Whitney-Menger, il y a dans r0 3 chemins sans points communs joignant les

3 sommets i, j, k de 7 à 3 points a,b,c du bord de X0 (fig. 4). Il suffit
d'appliquer le théorème au graphe obtenu en ajoutant à r0 2 sommets, un a

dans 7 avec 3 arêtes le joignant aux 3 sommets de 7 et un co joint par des

arêtes à chaque sommet du bord de X0. On applique le théorème aux
sommets a et co.

On considère maintenant les coefficients c tels que les coefficients des arêtes

des 3 chemins tendent vers + oo, les autres restant fixés. A la limite les images
des sommets /, j, k de T vont coïncider avec les images de a, b, c qui sont
3 sommets distincts du bord de A; le triangle 0(7) sera donc non dégénéré.

Maintenant l'ouvert Q nTQT est une intersection finie d'ouverts
denses, donc lui-même un ouvert dense.
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