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COMMENT RENDRE GEODESIQUE
UNE TRIANGULATION D’UNE SURFACE?

par Yves COLIN DE VERDIERE

RESUME. On montre que toute triangulation d’une surface compacte a
courbure négative ou nulle est rendue géodésique par minimisation de I’énergie
et un résultat analogue pour les polygones convexes du plan. On obtient ainsi
des analogues discrets naturels de théorémes connus pour les applications
harmoniques de surfaces (Kneser-Choquet, Jost-Schoen) et une extension de
résultats de Tutte.

Etant donnée une surface compacte X munie d’une métrique rieman-
nienne g, on appelle triangulation (topologique) de X, la donnée d’un complexe
simplicial X,, d’un homéomorphisme @, de X, o sur X dont la restriction @g
au l-squelette I'y de X, soit un plongement C'-par morceaux. On dira que la
triangulation est géodésique si les images des arétes de I’y par @, sont des arcs
de géodésiques pour la métrique g.

Le probléme que nous étudions est le suivant: peut-on déformer une
triangulation d’une surface de facon a la rendre géodésique?

La réponse est connue dans le cas euclidien par Fary [FY], Tutte [TU]. La
méthode employée par Tutte est proche de la ndtre mais utilise directement le
critére de planarité de Kuratowski. Un argument global de courbure totale
(Gauss-Bonnet) associé a une ¢tude complete des problémes de dégéné-
rescence permet de donner une méthode géomeétrique directe qui marche sous
la seule hypothese de courbure < 0. L’idée est de considérer chaque aréte
comme un ¢lastique avec une constante de couplage arbitraire: la position
d’équilibre, minimum de I’énergie potentielle, de ce filet élastique donne une
solution.

Si on note A I’ensemble des arétes de I'y et qu’on introduit, sur chaque
aréte (i,j) € A, un parametre s € [0,1], on note, pour toute application
¢®:I'g— X, et pour tout ¢ = (¢; ;) € R*\0)4, E.(p) I’énergie de ¢ donnée
par: .

Mots clés: triangulation, calcul des variations.
Codes AMS: 05C10, 53C22, 57M20, 57R05, 57R40, S8E10, 58E20.
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1

Z Ci,j § ” (bi,j(S) “2 ds ,
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E () =
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ou ¢;; est la restriction de ¢ & laréte (i, j) et ¢;; désigne la dérivée par
rapport a s.

On souhaite montrer, que sous des hypothéses convenables, si ¢ minimise
E. dans la classe d’homotopie d’une triangulation topologique donnée @,
alors ¢ est la restriction a I'y d’une triangulation géodésique isotope a la
triangulation initiale. On a également des résultats dans le cas des variétés a
- bord en supposant le bord de la triangulation fixé sur un polygone convexe.

THEOREME 1. Dans la classe d’homotopie de ©¢©,, il existe, pour
chaque choix de c¢, wune application ¢ minimisant E.. De plus, si la
courbure de g est négative ou nulle, ¢ est essentiellement unique, au sens
que, si ¢, et ¢, sont 2 minimas homotopes, ils le sont par ¢, qui est
une courbe de minimas telle que la région balayée par I'image de ¢, est
plate et que d¢,/dt est un champ de vecteurs constant le long de chaque
image ¢©,(Ty): en particulier les images de T, par les ¢, sont
isométriques. Si la courbure est < 0, on a unicité.

Le résultat principal est alors le:

THEOREME 2. Si (X,g) est a courbure de Gauss <0, toute ¢
minimisant E. est un plongement géodésique de Ty qui admet un
prolongement (unique a isotopie pres) en une triangulation de X isotope
a O,.

Nous énoncons maintenant une version a bord: X est un polygone
géodésique strictement convexe d’une surface 1-connexe a courbure < 0. On
se donne une triangulation ®, de X, telle que le bord de X, soit 'un cycle
(1,2,...,N), que ®, envoie les sommets de ce cycle sur les sommets du
polygone (dans le méme ordre) et les arétes (i,i+ 1) (1 <i<<N) sur les cbtés
de X (avec la convention habituelle N+ 1 =1).

On a alors le:

- THEOREME 3. Pour tout choix de ce (R*\0)4 (ou A désigne
- maintenant les arétes intérieures de X,), il existe un ¢ wunique minimisant
E. a bord fixé et ce ¢ est la restriction a 'y d’une triangulation
géodésique de X isotope a D,.

A
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Ce dernier théoréme contient comme cas particulier un résultat de Tutte
(ITU]) concernant le cas euclidien: il considere le plongement barycentrique
qui correspond au cas ou tous les ¢; ; valent 1.

Les résultats précédents sont des analogues discrets des théorémes de
Kneser-Choquet ([CH], [KN]) pour le cas des polygones et Jost-Schoen ([J-S])
pour les surfaces compactes.

Nous avons été motivé au départ par le probléme rencontré dans [CV2] de
construire des systémes d’angles cohérents pour une triangulation. Les
théorémes précédents donnent une construction directe de tels systemes.

Questions. 1l serait intéressant de comprendre directement le cas de la
sphére ou le minimum de I’énergie est obtenu pour ¢ constante: toute triangu-
lation y est homotope a une application constante; il est probable qu’il y a
dans ce cas des minimas locaux qui donnent lieu a des triangulations
géodésiques:

Le cas des graphes infinis doit pouvoir étre traité de facon analogue en
considérant des applications d’énergie minimale avec une condition de
Dirichlet a I’infini (voir a ce sujet [TO1] et [TO2]).

Nos théoremes donnent immédiatement [’existence de plongements
géodésiques de tout sous-graphe d’une triangulation, par exemple un graphe
2-cellulaire, i.e. dont les composantes connexes du complémentaire sont des
disques.

Il serait souhaitable de comprendre quelles sont les configurations possibles
d’une application ¢ d’énergie minimale dans une classe d’homotopie contenant
un plongement: une telle application peut ne pas étre un plongement. Y-a-t-il
alors pour I’image du graphe par ¢ d’autres possibilités que d’étre un point
ou une géodésique fermée (cas d’une triangulation d’un petit voisinage
tubulaire d’une telle géodésique)?

1. PREUVE DU THEOREME 1

Pour prouver I’existence, il suffit d’adapter une preuve de ’existence de
géodésiques périodiques dans toute classe d’homotopie d’applications du
cercle S' dans X ([KG] p. 35).

On peut aisément définir ’espace de Sobolev H! (T, X), qui est le sous-
espace des applications continues de I'y dans X, formé des applications dont
la restriction a chaque aréte (i, ;) est d’énergie S(l)“ 0;,;(s) |*ds finie. Les
classes d’homotopie sont alors des fermés de cet espace.
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Montrons que la fonctionnelle E, atteint son minimum sur H' (T, X):
cela résulte classiquement de la compacité des ensembles E.< M

~ pour la topologie de la convergence uniforme (Ascoli: d(@; ;(s),®: i(s"))
< Ce.)/|s"—s]|) et de la semi-continuité inférieure de E. pour cette
~ topologie. ,
Si on a 2 solutions, soient ¢, et ¢,, on peut rendre ’homotopie entre elles
géodésique, au sens que pour chaque ¢, la restriction de ¢, aux arétes de'I'y
est géodésique et que, pour tout sommet i de I'y, ’application ¢ — ¢,(i) est
géodésique. E.(p,) est alors convexe pour ¢ € [1,2] dés que la courbure de X

‘ . 00, 00;, )
est < 0; en effet, si V, ; = o = 5 et K, est la courbure sectionnelle,
4 S

on a la formule de variation seconde:

d2E. :

= ) Cij S (| Ve Vi 1? = Ke(0:,,)) | (Vi ) norm |?) ds
dt? () e A 0

ou (Vi j)norm €St la composante normale a 7°de V; ;.

‘ On en déduit que E.(¢,) est constante, ainsi que les longueurs des images

- par ¢, des aré€tes de I'y (somme constante de fonctions convexes), puis le

résultat annoncé: la distance entre 2 points parcourant a vitesse constante

2 géodésiques ne pouvant &tre constante que si la région balayée est plate et

les 2 géodésiques paralléles et parcourues a la méme vitesse.

Remarquons aussi que les extrémas de £, sont caractérisés par le fait que
les ¢;; sont des arcs géodésiques parameétrés proportionnellement a la
longueur et qu’on a

Vi, Y ¢i;$:;0) =0,

(i, j)e A

ou ¢, ; est supposée telle que ¢; ;(0) = ¢ (7).

2. PREUVE DU THEOREME 2

Dans ce §, ¢ est donnée minimisant E. dans la classe d’homotopie de ¢,.
Pour tout triangle T de X,, la restriction de ¢ au bord de T est homotope
"4 0 et donc se reléve en un ¢ dans le revétement universel X de X, unique a
- automorphisme prés du revétement. L’image 0 (d7T) est le bord d’un triangle
- T, (éventuellement dégeéner€) de X. On prolonge ¢ a X, en ® de facon que,
pour tout triangle 7, on ait ®(7) = n(7T,), ou © est la projection canonique

SO0 A W
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de X sur X et que @ soit un homéomorphisme local de 7 sur D(T) si ce
triangle n’est pas dégénéré.

2.a. COURBURE

On attribue a chaque angle de chaque triangle de X, une mesure a avec
0 < a < 7 qui est celle de I’angle correspondant dans 7, de facon compatible
avec la dégénérescence éventuelle de T,: si les 3 sommets de 7, sont
confondus, les o sont arbitraires de somme 7. Si le triangle est plat sans cotés
de longueur nulle, 2 des a valent 0, le 3¢ m, si le triangle a un cdté de

T
longueur nulle prendre les angles ayant ce c6té avec la valeur —2- , etc.

On définit alors la courbure K, de chaque sommet / par K,(i) = 27
— Y .a, ou ) . désigne la somme sur les angles de sommet i.

La formule de Gauss-Bonnet donne, en notant par K, la courbure de
Gauss de (X, g):

Y Ko(i) + ;S Ky = 2mx(X) ;
i T,

©

en effet, pour un triangle non dégénéré, on a par Gauss-Bonnet pour un
triangle géodésique que l'intégrale de la courbure vaut la somme des angles
diminuée de m, alors que pour un triangle dégénéré cette intégrale vaut O et
par la convention précédente la somme des angles vaut 7. Sommant ces égalités
sur tous les triangles et utilisant la relation d’Euler y(X) = nombre de
sommets — nombre d’ar€tes + nombre de faces, et le fait que pour une

. . 2
triangulation le nombre de faces vaut les 5 du nombre d’arétes, on conclut

facilement.
Comme ® est homotope a @, elle est de degré 1 et I’on en déduit qu’elle

est surjective. Comme X est a courbure négative ou nulle et que
SXKg = 2ny(X), on a

(1) ZK(,,(z’) >0.

2.b. DEGENERESCENCE PONCTUELLE

Soit X; un sous-complexe connexe complet maximal de X, tel que la
restriction de ® a X soit constante, alors:
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LEMME. X, est simplement connexe.

Preuve. D’abord il est clair que X, ne contient pas de lacets de X non
homotopes a 0, car un tel lacet deviendrait par ¢ homotope a 0.

De plus, si X; n’était pas l-connexe, on pourrait diminuer E. en
appliquant la partie de X, intérieure a X, sur le méme point de X que

O (X1). L]

X2

FIGURE 1

Soit (i1,i3, ...,im) (fig. 1) le cycle des sommets de X, entourant X,
xo = 0(X4), x; = o)) et oy, s, ..., 0, les mesures des angles de sommet |
dans X, et de cotés (i,i,), (i,i;5). Si on pose

1

K (X)) = 21 —

m
a;,
1

[N g

l

la formule de Gauss-Bonnet implique

K,(X)= Y K,@).

i sommet de X

Soit u,; le vecteur unitaire tangent en x, a ’arc géodésique orienté image
par ¢ d’une aréte (i, i,) ({ sommet de X). Le fait que ¢ soit critique pour E.
implique I’existence de constantes C; > 0 telles que:
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Il est donc impossible que K,(X,) soit > 0; en effet alors I’image par ¢ du
cycle (iy,1,,...,1;) n’entourerait pas x, et donc les vecteurs u, seraient tous
dans un demi-plan strict de P’espace tangent en x, a X (une application
continue du cercle dans lui-méme qui n’est pas surjective est telle que tout point
non extrémité de I’image est I’image d’au moins deux points). La relation (1)
implique alors que K,(X;) = 0, car I’ensemble des sommets de X est la
réunion des sommets des complexes X, (éventuellement réduits a un point).

Montrons maintenant que la seule possibilité pour X, est d’étre un sous-
graphe linéaire de sommets consécutifs (j;,/j;, ...,Jx) tel que I'image des
triangles de X, ayant au moins un sommet dans X, par ¢ soit un segment
géodésique contenant x, comme point intérieur (fig. 2).

2 X3 X4 Xs Xo X1 X2 Xe

FIGURE 2

En effet, appelons extrémal tout sommet i de X tel que les cOnes tangents
en I a X, et Xy,\X, soient connexes et non vides (fig. 3). Alors, on voit

Sommets extrémaux de X;: o

FIGURE 3
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que X; admet au moins 3 sommets extrémaux s’il n’est pas un graphe
 linéaire. Montrons que la somme des angles o, extérieurs a X, ayant pour
sommet un tel point extrémal est > n: en effet dans le cas contraire les vecteurs
u, correspondants seraient dans un demi-plan strict. Comme la somme totale
des a,; est 2w, on en déduit le résultat annoncé: il y a au plus 2 sommets
extrémaux et donc X, est linéaire. Si X, n’est pas réduit a un sommet unique,
il est clair que la condition d’extréma pour E, implique que les vecteurs i,
issus des extrémités sont alignés et non tous de méme orientation. Les a,
correspondant aux autres sommets de X, sont alors nuls, puisque la somme
totale est 27.

On voit ainsi que la courbure K, (i) est nulle pour tous les sommets de
Xy, car les complexes X, sont soit réduits & un point, soit des sous-graphes
linéaires et dans ce dernier cas, c’est clair que la courbure K, est nulle en
chaque sommet de X,;. On note que tous les triangles qui ont un sommet au
moins dans X, sont dégénérés.

2.c. DEGENERESCENCE LINEAIRE

2.cl. Soit X, un sous-complexe connexe complet maximal de X, tel que
les images par ¢ des triangles de X, soit dégénérés. D’apres ce qui précede les
arétes issues d’un sommet de 90X, ont des images par ¢ non réduites a un
point: les seuls «X;» possibles sont intérieurs a des «X,».

Alors on a le:

LEMME. X, est soit l-connexe, soit contractible sur une courbe de
Xo non homotope a 0. Dans le premier cas, [’image par ¢ de X, est
un segment de géodésique, dans le second, c’est une géodésique périodique.

Preuve. 11 est clair d’aprés ce qui précede que I’image de X, par @ est
un arc complet d’une géodésique de X.

En effet si 2 triangles dégénérés ont un c6té non réduit a un point en
' commun ils sont alignés, il en est de méme d’aprées le paragraphe précédent
s’ils ont un coté réduit a un point.

Les composantes connexes de X\ X, ne sont pas des disques topologiques
car le bord de ce disque ayant une image géodésique, on peut diminuer E. en
projetant orthogonalement le disque sur cette geéodésique (le faire dans le
revétement universel).
| Si maintenant X, n’est pas un disque, les composantes connexes du bord
' ne sont pas homotopes a 0, mais sont homotopes entre elles dans X, sinon
I’image par ¢ ne pourrait &tre une seule géodésique.
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On en déduit que X, est soit un disque, soit un cylindre, soit un ruban de
M&bius. On élimine aussi facilement le cas ou X, = X. [

2.c2. Cas ou X, est un disque

Dans ce cas la formule de Gauss-Bonnet donne:

Z (Eaext—n)zzna

iedX, i
ol Y. .0, est la somme des mesures des angles extérieurs a X, au sommet !
de 0.X,.

De plus cette somme ), . ne peut valoir que 0, ou 2m, car les angles
intérieurs valent tous 0 ou 7 et la courbure K, est 0.

Le cas 0 est impossible car alors les triangles extérieurs de sommet i seraient
dégénérés et donc feraient partie de X,. On voit donc qu’il y a exactement
2 sommets de 98X, ou cette somme vaut 2n et les autres ou elle vaut =.
Montrons qu’il n’y a pas de sommets de cette sorte:

C’est clair car les arétes extérieures en i sont situées dans un demi-espace,
ce qui est impossible (condition d’extrémas), sauf si elles sont alignées avec
¢ (0.X,) auquel cas elles ne sont pas extérieures.

On en conclut que le bord de X, n’a que 2 sommets, ce qui est
incompatible avec le fait que X, est un complexe simplicial: il n’y a pas
2 arétes qui ont les mémes extrémités.

2.c3. Cas ou X, est un cylindre ou un ruban de Mobius

La méme technique que précédemment s’étend sans difficultés.
On a donc montré que tous les triangles ®(7) sont non dégénérés.

2.d. FIN DE LA PREUVE

Il est maintenant clair que ® est un homéomorphisme local a ’intérieur
des triangles de X, il reste & voir que c’est vrai prés des sommets et comme
® est de degré 1, on en déduit que c’est un homéomorphisme global.

Comme K, (i) est nul, la seule possibilité pour que ® ne soit pas un
homéomorphisme local en i est que I’image des triangles de sommet i soit
contenue dans un angle d’ouverture < n. C’est impossible car toutes les arétes

issues de i devraient avoir une image alignée et donc les triangles de
sommet / seraient dégénérés.
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3. PREUVE DU THEOREME 3

Le théoréme 3 se prouve par des modifications simples de la preuve du
théoréme 2. Nous préférons indiquer une preuve rapide qui donne le résultat
pour un c générique. ,

Cette preuve suppose une hypothése d’analyticité, aussi nous limiterons-
nous au cas ou la métrique riemannienne de X est euclidienne: X est un
polygone strictement convexe du plan euclidien. '

Cette preuve s’appuie sur le théoreme de Whitney-Menger ([BE]
p. 199, [W]). ‘

Un graphe est dit 3-connexe si on ne le déconnecte pas en Otant 2 sommets
arbitraires. Le 1-squelette d’une triangulation d’une surface est 3-connexe.

THEOREME. Dans un graphe 3-connexe, 2 sommets disjoints peuvent étre
joints par 3 chemins sans points COmMMuUns.

Prouvons maintenant le théoréme 3 pour un ¢ générique; il est clair qu’il

suffit de prouver que les triangles ®(7) image des triangles de X, sont non

- dégénérés, car I’argument de courbure donne ensuite le résultat final comme
dans le §2.

FIGURE 4
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Montrons que pour tout 7, I’ensemble Qr des ¢ pour lesquels ®(T) est
non dégénéré est un ouvert dense:

¢’est un ouvert (dépendance continue de ¢ par rapport a ¢). Le complémen-
taire de cet ouvert est donné par des relations algébriques, car le systeme
d’équations donnant les coordonnées des images par ¢ des sommets est un
systéme linéaire dont les coefficients sont les ¢; ;.

I suffit de montrer que cet ouvert est non vide. Par le théoréme de
Whitney-Menger, il y a dans I'y 3 chemins sans points communs joignant les
3 sommets i,j, k de T & 3 points a, b, c du bord de X, (fig. 4). Il suffit
d’appliquer le théoréme au graphe obtenu en ajoutant a I'y 2 sommets, un a
dans T avec 3 arétes le joignant aux 3 sommets de 7 et un ® joint par des
arétes a chaque sommet du bord de X,. On applique le théoreme aux
somimets o et .

On considere maintenant les coefficients ¢ tels que les coefficients des arétes
des 3 chemins tendent vers + oo, les autres restant fixés. A la limite les images
des sommets 7, j, kK de T vont coincider avec les images de a, b, ¢ qui sont
3 sommets distincts du bord de X; le triangle ®(7) sera donc non dégénéré.

Maintenant P'ouvert Q = Nn+Qr est une intersection finie d’ouverts
denses, donc lui-méme un ouvert dense. (]
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